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1. Description Logics, Concrete Domains and Combined Proofs

Symbolic Al approaches based on logic are inherently explainable—conclusions derived via automated
reasoning can be traced through proofs showing step-by-step inference from axioms. Every inference
step in symbolic reasoning carries explicit semantic meaning, enabling full transparency. However, to
fully benefit from this, proofs must serve as effective explanations while remaining understandable.
In ongoing work, we address these issues in the context of Description Logics (DLs) [1], proofs [2, 3]
and our interactive visualization tool EVONNE! [4, 5]. In this paper, we concentrate on the extension
of the proof visualization facilities of EvONNE to DLs with so-called concrete domains (CDs) [6, 7].
In particular, we consider extensions of tractable DLs of the ££ family [8] with two p-admissible
concrete domains based on rational numbers, one (Dg j;,) that can use linear equations to formulate
constraints [9] and another (Dg,4;) based on difference constraints [10]. Such numerical constraints are
useful for describing concepts whose definition involves quantitative information, as in the following
examples.

Example 1. For a delivery drone, its current battery percentage is measured at checkpoints, denoted as
bpy and bps. Additionally, the following safety constraints are imposed: bp; — 0.2 = bps, bp1 > 0.3 and
bpa > 0.25. If the initial percentage (bp1) equals 0.4, then not all the constraints hold, and the drone is not
permitted to fly—see Figure 1a.

Example 2. Assume nr and hr represent the average normal and high battery discharge rates. Under
normal conditions, the delivery drone (DD) can fly for 8 hours on a single charge with a 30Ah battery, i.e.,
8nr = 30. In cold conditions, one hour of flight increases the battery consumption such that 4nr+ hr = 30.
Next, if a system consumes 30Ah in two hours at a high discharge rate, it qualifies as a large battery drone
(LBD), i.e, [2hr = 30] C LBD. Given these constraints, it follows that the delivery drone is a large battery
drone, i.e., DD C LBD—see the combined proof in Figure 1b, where the proof in Figure 1c shows the D jin
inferences.

Essentially, the CD Dg g contains predicates x+ = ¢, * > ¢, and x + ¢ = y, and the Dg
predicates are given by linear equations ) ;" | a;z; = b, for constants ¢, a;, b € Q, with their natural
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[bpl = 0.4] [bpl - 0.2 = bp2]

[Propagate =]

[bp2 = 0.2] | [bp2 > 0.25]

[Constant too small]

(@) Do, air proof from Example 1

DD € [8*nr = 30] DD £ [hr + 4*nr = 30] [8*nr = 30] [hr + 4*nr = 30]

CDP1 Ontology Axiom [-1/2,1]

DD & [2*hr = 30] || [2*hr = 30] £ LBD [hr = 15]

Concept Hierarchy

[2]

DD £ LBD

[2xhr = 30]

(b) Combined proof from Example 2 (c) Expanding CDP1 in (b)

Figure 1: Examples of proofs in EVONNE.

semantics [8, 9]. An implication is of the form € — 3, where (3 is a constraint, i.e., a predicate with
variables as arguments, and € is a set of constraints. The implication is valid if all variable assignments
satisfying all constraints in € also satisfy 3. A set € is unsatisfiable iff € — L is valid.

In [10], we have theoretically addressed the problem of generating proofs for consequences derived
from knowledge bases formulated in such DLs. Here we contribute the practical proof visualization
tool supporting DLs with linear equations and difference constraints.

2. Domain-Specific Visualizations

This work introduces novel visual explanations for unsatisfiability and entailment in the considered
CDs, designed to reflect their unique properties and offer more intuitive insight into the underlying
numerical reasoning.

Case Dg jin. If we consider systems of linear equations with at most two variables, which are shared
across all equations, then we can use lines in the 2D Euclidean Space to achieve a compact representation
of all solutions to the equations, as each solution corresponds to a point in the 2D space. Using
dimensionality reduction, we can apply the same idea to equations with more than two variables. Let €
be a set of equations where € — 3 holds, let s be a solution to €, and let  and y be any two variables
appearing in 3. By replacing all the variables, except x and vy, in all equations with their corresponding
values in s, we obtain equations involving at most two variables. Therefore, in the xy-plane all the lines
must intersect in the same point. To explain unsatisfiability, we can use a similar approach.

Figure 2 shows examples of Dg j;, explanations in EvONNE. Users can toggle between planes and
assign values to free variables. The equation system appears top-left, with current variable assignments
shown top-right. Since the system in Figure 2a has one degree of freedom, setting x4 = 0 uniquely
determines the remaining variables. In contrast, in Figure 2b, the top right shows the system of
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Figure 2: Examples of explanations for Dg i, implications in EVONNE

Negative Cycle - CDP1®@ 2
Premises: 5
x4 + 0 = x5 x4 <= -2
X3 - 2 =x2 X3 =3<=13 -€
X2 - 1=x1 -5
x4 + 5 = x3 ")
0
> -2
Conclusion:
x5 + 2 =x1 X5 <= -2
Negated:
X5 - x1=-2.0 - € -2 - € . X
x1-x5=<2.0-¢€
2 - €
Cycle Value: -€ -1
x1 k= 0 -€
3 =

Figure 3: Example of an explanation for Dg_ i implications in EVONNE.

equations with respect to the currently chosen variable assignment. In this case the visualization makes
contradictions immediately apparent—as demonstrated by the highlighted contradiction 3 = 0.

Case Dg gifs. It is well established [11] that difference constraints (i.e., x — y < q) can be represented
as weighted directed graphs such that every variable corresponds to a vertex and every constraint to a
weighted edge between = and y labelled by ¢. Given a set of difference constraints, deciding whether
it is unsatisfiable can be reduced to finding a simple cycle in the corresponding graph with a negative
weight [11].

We show how to rewrite all types of constraints in Dg 4 into difference constraints. Thus, we
can represent any set € of D g constraints as a difference graph, and if € — L, we can explain the
contradiction in € by identifying the negative cycle in the graph. In the case when € is satisfiable and
¢ — [, we can explain the implication by showing that € U {—5} — L, which allows us to effectively
use the notion of negative cycles.

Figure 3 shows a screenshot of a negative cycle in EvONNE. In the implementation, the cycle is
animated, allowing users to visually follow its progression. Additionally, users can assign concrete
values to variables. These values are then automatically propagated along the negative cycle, allowing
users to observe how the set of constraints behaves under such assignments. In particular, this makes it



possible to see exactly how the cycle leads to logical inconsistencies, which are highlighted in red, e.g.,
r3=3<3—e

Empirical Evaluation. We conducted an empirical validation through user studies and benchmarks,
to demonstrate the effectiveness of our approach. The creation of these visualizations remains per-
formant (under 200ms) with the largest proofs in our experiment, and the studies revealed areas of
improvement for the visualization of proofs and our alternative CD explanations. The current version
of EVONNE is accessible through https://imld.de/evonne, further details of our evaluation results are
also available there.

3. Conclusion

The latest extension of EVONNE enables interactive visualization of proofs for DLs with concrete
domains—crucial for modeling concepts involving quantitative constraints. This extension contributes:
(1) the first proof visualization tool supporting DLs with linear equations and difference constraints,
(2) novel domain-specific visual explanations tailored to enhance comprehension of numerical reasoning,
and (3) empirical validation through user studies and benchmarks. Our assessments showed that the
proposed explanations support users in understanding conclusions. When comparing proofs with
domain-specific visual explanations, participants’ opinions varied for Dg j;;, though most alluded
to a trust factor favoring proofs over visual explanations, suggesting that, in this case, such visual
explanations might not be necessary. In contrast, for D g participants highly valued the clarity
and ease of understanding provided by the animated cycles, making them a more preferred form of
explanation. As future work, we plan to address issues raised by the participants’ feedback on both
proofs and the visual CD explanations.
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