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Debugging performance bugs in configurable software systems is a complex and time-consuming task that

requires not only fixing a bug, but also understanding its root cause. While there is a vast body of literature on

debugging strategies, there is no consensus on general debugging. This makes it difficult to provide concrete

guidance for developers, especially for configuration-dependent performance bugs.

The goal of our work is to alleviate this situation by providing an framework to describe debugging strategies

in a more general, unifying way.

We conducted a user study with 12 professional developers who debugged a performance bug in a real-world

configurable system. To observe developers in an unobstructive way, we provided an immersive virtual reality

tool, SoftVR, giving them a large degree of freedom to choose the preferred debugging strategy.

The results show that the existing documentation of strategies is too coarse-grained and intermixed to

identify successful approaches. In a subsequent qualitative analysis, we devised a coding framework to reason

about debugging approaches. With this framework, we identified five goal-oriented episodes that developers

employ, which they also confirmed in subsequent interviews.

Our work provides a unified description of debugging strategies, allowing researchers a common foundation

to study debugging and practitioners and teachers guidance on successful debugging strategies.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Human Factors, Program Debugging, Immersive Environment

ACM Reference Format:
Max Weber, Alina Mailach, Sven Apel, Janet Siegmund, Raimund Dachselt, and Norbert Siegmund. 2025.

Understanding Debugging as Episodes: A Case Study on Performance Bugs in Configurable Software Systems.

Proc. ACM Softw. Eng. 2, FSE, Article FSE064 (July 2025), 23 pages. https://doi.org/10.1145/3717523

Authors’ Contact Information: Max Weber, max.weber@informatik.uni-leipzig.de, Leipzig University, Leipzig, Germany;

Alina Mailach, alina.mailach@informatik.uni-leipzig.de, ScaDS.AI Dresden/Leipzig, Leipzig University, Leipzig, Germany;

Sven Apel, apel@cs.uni-saarland.de, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany; Janet

Siegmund, janet.siegmund@informatik.tu-chemnitz.de, Chemnitz University of Technology, Chemnitz, Germany; Raimund

Dachselt, raimund.dachselt@tu-dresden.de, ScaDS.AI Dresden/Leipzig, Dresden University of Technology, Dresden, Ger-

many; Norbert Siegmund, norbert.siegmund@informatik.uni-leipzig.de, ScaDS.AI Dresden/Leipzig, Leipzig University,

Leipzig, Germany.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTFSE064

https://doi.org/10.1145/3717523

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE064. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0003-3454-4121
HTTPS://ORCID.ORG/0000-0001-6204-2095
HTTPS://ORCID.ORG/0000-0003-3687-2233
HTTPS://ORCID.ORG/0000-0002-5815-266X
HTTPS://ORCID.ORG/0000-0002-2176-876X
HTTPS://ORCID.ORG/0000-0001-7741-7777
https://doi.org/10.1145/3717523
https://orcid.org/0000-0003-3454-4121
https://orcid.org/0000-0001-6204-2095
https://orcid.org/0000-0003-3687-2233
https://orcid.org/0000-0002-5815-266X
https://orcid.org/0000-0002-5815-266X
https://orcid.org/0000-0002-2176-876X
https://orcid.org/0000-0002-2176-876X
https://orcid.org/0000-0001-7741-7777
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3717523


FSE064:2 M. Weber, A. Mailach, S. Apel, J. Siegmund, R. Dachselt, and N. Siegmund

1 Introduction
Debugging, the process of identifying and resolving coding errors in software systems [Hailpern and

Santhanam 2002; Katz and Anderson 1987; McCauley et al. 2008], is a tedious and time consuming

activity. It is not just about fixing code, it also includes understanding why a bug happened in the

first place and finding ways to prevent it in the future. If software developers can identify the root

cause of a bug, they can fix it and improve the overall stability, reliability, and performance of their

software systems. Performance bugs are particularly notorious. They degrade software efficiency

and increase energy consumption in practice [Li et al. 2016; Velez et al. 2022], and detecting and

fixing performance bugs is challenging, especially when bugs remain hidden until triggered by a

specific software configuration. Thus, the debugging process of performance bugs in cofigurable

software systems differs from traditional bug-detection strategies. Understanding how developers

reason and investigate the root cause of a performance bug is crucial for devising and refining

debugging strategies and for developing tools to support the debugging process. As a consequence,

it is the human factor that is the focus of our study: How do developers approach debugging

performance issues and what steps do they take?

While the debugging process for configuration-dependent performance bugs differs from tradi-

tional debugging, for which extensive research exists (see Section 2.1), it is advisable to leverage

existing knowledge on useful debugging strategies to support developers also when debugging

configuration-dependent performance bugs. However, in the literature, we find contradictory

definitions of debugging strategies, and certain strategies often apply only in specific study se-

tups [Chintakovid et al. 2006; Grigoreanu et al. 2006; Katz and Anderson 1987; Prabhakararao et al.

2003]. Moreover, strategies that resemble other identified strategies make them hard to distinguish.

Such an unconsolidated landscape of debugging strategies hinders concrete suggestions of specific

strategies or even starting points to debug configuration-dependent performance bugs.

Our goal is thus twofold: First, we want to understand what debugging strategies developers

use while debugging performance issues of configurable software systems. Second, we want to

carve out a framework based on fine-grained developer actions that allows for reasoning about

developers’ debugging activities, thereby setting existing debugging strategies in relation and

enabling the identification for new ones. For this purpose, we analyzed debugging activities by

means of an in-depth user study with 12 professional software developers. We observed their

behavior while they traced the root cause of a configuration-dependent performance bug in a

real-world configurable software system, using an immersive visual computation tool that we

developed, called SoftVR, thereby collecting over 18 hours of video and audio material. SoftVR
enables holistic observations of developers’ activities, unlike traditional IDEs. It allows developers

to position unlimited code windows freely around them and directly visualize control flow between

the windows. Furthermore, developers can ‘walk’ through their code window setup, using the

immersive capabilities of SoftVR. This way the code sections developers focus on are directly

observable. The VR setup allows mental activities to be slowed down, such that they are easier

to observe from an outside perspective [Andrews et al. 2010; Bandyopadhyay 2020; Lisle et al.

2021]. The study, including a pilot study with 10 students, spanned over 60 hours in total. We

manually analyzed the resulting video and audio material using a fine-grained qualitative coding

framework derived from existing debugging literature, followed by open coding to identify distinct

goal-oriented debugging episodes.

As for the first goal, understanding debugging strategies for performance issues, we found that

developers usually do not use a single debugging strategy throughout their debugging process, but

a mixture of different strategies, often multiple strategies at a time, and sometimes we cannot even

identify which strategy is being used. This situation hinders analyzing and comparing different
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debugging approaches of the developers. As for the second goal, defining a framework that allows

for reasoning about debugging strategies, we found goal-oriented episodes to be a more effective

trade-off between a too broad classification into strategies and a too fine-grained one into individual

actions. Describing developers’ behavior in terms of what they aim to achieve in a time frame

can clearly distinguish activities and strategies and allows for a better derivation of actions, such

as tool support or education. This novel episode-based perspective provides a nuanced view on

debugging, where not a single strategy is used and followed from the beginning to the end, but

debugging is rather understood as a sequence of goal-oriented episodes that can make use of several

strategic elements. This way, our framework allows for relating existing debugging strategies

to each other, and therefore enables describing the debugging process of developers in realistic

debugging scenarios. As a further notable contribution, we identified aimlessness as a phase of
debugging that is prevalent, but not mentioned before in the literature. Developers need to overcome

this phase for debugging configuration-dependent performance bugs successfully. This episode

hindered developers in our study in detecting and understanding the bug. Not all developers

were able to overcome this episode. We analyze the underlying reasons in Section 5 and propose

novel recommendations to improve debugging tools, support education, and advance research on

debugging approaches.

To summarize, in this paper, we make the following contributions:

• An overview of existing debugging strategies described in the literature.

• A fine-grained coding framework to track the actions developers perform during debugging.

These actions are rooted in the debugging strategies proposed in the literature.

• SoftVR, a novel instrument for observing developers debugging real-world software systems

in a highly controlled environment.

• A novel perspective and framework on the process of debugging, which supports better

alignment of existing strategies and the definition of more nuanced approaches to debug.

• A replication package, including all data and code on a publicly accessible Web page
1
.

2 Background and Related Work
In this section, we describe performance bugs as a notorious type of software bugs and provide

an overview of debugging strategies described in the literature. We show that existing debugging

strategies are not sufficient to find and reason about configuration-dependent performance bugs.

2.1 Performance Bugs
Performance bugs degrade user experience and increase energy consumption in practice [Li et al.

2016; Velez et al. 2022]. Numerous studies have shown that performance bugs are especially severe

if they are configuration-dependent [Han and Yu 2016; Iqbal et al. 2022; Jin et al. 2012; Jovic et al.

2011; Nistor et al. 2013; Parnin and Orso 2011]. That is, only for a certain combination of (de-)

selected configuration options, we may experience unexpected performance degradation. Such

configuration-dependent performance bugs constitute up to 60 % of performance bugs [Han and Yu

2016; Han et al. 2018], with 80 % of these requiring code changes for resolution [Han and Yu 2016;

Han et al. 2018]. For more than 60 % of configuration-dependent bugs, developers need, on average,

five weeks to fix them [Krishna et al. 2020], making it a time-consuming process.

To illustrate the difficulty in finding and understanding a performance bug, consider the example

in Figure 1: There is a bug in the image conversion tool Density Converter, which slows down

the process of calculating a smaller image from a given image. The configuration option fraction is

changed to a smaller value, which should result in a smaller image that is computed faster. However,

1
Supplementary Web page: https://doi.org/10.5281/zenodo.14825306
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computation took more time and the resulting image is larger. A profiler identified the method

verticalFromWorkToDst as the computation hot-spot, which represents an extraordinary execution

time at this specific code region. The bug is in the calculation of the baseWidth and baseHeight

of method getDensityBucketsWithFractionScale, because dividing by a decimal number causes

the new dimensions to increase instead of decrease. To pinpoint the root cause, a developer must

traverse the control and data flow across different classes and methods. On the path from the

hot-spot to the root-cause (i.e., the bug), there are eight functions within six classes that are not

shown in the example but are the minimum number that have to be traversed by a developer.

Therefore, developers have to open a large number of files in parallel and have to switch between

methods within these files.

2.2 Debugging Strategies

class ResampleOP {
...
private void verticalFromWorkToDst(...){
...
for(int x=0; x<this.dstWidth; x++) {
for(int y=this.dstHeight, y=0; y--) {
// calculates final image pixel by pixel
...

}}
}}

class DConvert {
float fraction = 0.5;
...
Arguments args = new Arguments(fraction, ...);
execute(args, ...);
}

class DensityBucketUtil {
...
private Dimension getDensityBucketsWithFractionScale(

Dimension srcDimension, Arguments args,
float fraction, ...) {

double baseWidth = srcDimension.width / fraction;
double baseHeight = srcDimension.height / fraction;
...

}}

. . . 

. . . 
Increased width and 
height means more 
calculations

M
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i
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Dividing by fraction 
increases image 
width and height

Fig. 1. Configuration-dependent Performance Bug in

Density Converter, an image conversion tool.

To get an overview of the landscape of debug-

ging strategies and to obtain a comprehensive

overview of existing debugging strategies, we

reviewed the literature using forward and

backward snowballing from seven seed publi-

cations [Baecker et al. 1997; Eisenstadt 1997;

Hailpern and Santhanam 2002; Hirsch and

Hofer 2022; Velez et al. 2022; Xie and Yang

2003,?]. In total, we analyzed 74 publications

and extracted 12 different debugging strate-

gies. We focus on eight strategies that can be

represented by our setup (shown in Table 1)

and omit strategies that require additional

artifacts (i.e., offline analysis [Böhme et al.

2017]) as well as strategies where multiple de-

velopers interact (i.e., mod debugging [Eisen-

stadt 1997]) or execute the program repeat-

edly (i.e., system replication, testing [Hirsch

and Hofer 2021; Murphy et al. 2008]).

For each selected strategy, we derived debugging actions expected to be observable during the

user study, listed in column Actions in Table 1. These codes represent actions that developers

perform when debugging. For instance, several studies report that developers use a scientific

strategy, where they generate hypothese about the reason or fix for a bug and then test them, and

we included the codes state or test hypothesis, and accept or reject hypothesis. This process led to

16 distinct codes derived from the literature. Actions are specific tasks developers perform when

following a certain debugging strategy. Next, we describe the debugging strategies.

Program comprehension and Inspect source code are both recognized as essential debugging

strategies in the literature. Program comprehension involves high-level browsing to build a com-

prehensive understanding of the program. This includes familiarizing oneself with the program’s

functions and structure by integrating insights from various representations, such as code, models,

and log files, as investigated by Romero et al. [2007]. Velez et al. [2022] found that developers initially

engage in high-level browsing searching for specific details, such as hot-spots and influential input

variables, which can lead to significant time spent in configurable software systems. Vessey [1985]

also observed this initial step of high-level browsing, showing that developers aim to understand

the functionality and structure of a program before identifying and repairing errors. Johnson et al.

[1982] described this as system thinking. Murphy et al. [2008] noted that program comprehension,
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Table 1. Mapping from debugging strategies, VR behaviors, and experiment aspects to codes (actions) for video

analysis. Debugging strategies and corresponding actions are extracted from the literature. For completeness,

we added the actions for VR and Experimentation (explanation in Section 4.1).

Title Description Actions References

D
e
b
u
g
g
i
n
g
S
t
r
a
t
e
g
i
e
s

Program comprehension Developers gain comprehensive and high-level

knowledge of the system by browsing through

code and files, using available resources as needed.

hot-spot configuration

bug report

[Murphy et al. 2008;

Romero et al. 2007; Velez

et al. 2022; Vessey 1985]

Inspect source code Examine the source code to understand its struc-

ture and functionality to build a comprehensive

mental model of the code.

code reading scanning [Böhme et al. 2017; Hirsch

and Hofer 2021; Murphy

et al. 2008; Peng et al.

2016; Subrahmaniyan et al.

2008]

Planning Developers create a structured plan or a series of

tasks to be executed.

planning [Subrahmaniyan et al.

2008]

Simulation Developers simulate code execution by mentally

executing the code, thereby identifying potential

issues through speculative reasoning.

simulate execution [Eisenstadt 1997; Romero

et al. 2007]

Scientific strategy Developers state and test hypothesis. state/test hypothesis

accept/reject hypothesis

[Eisenstadt 1997; Gould

1975; Perscheid et al. 2017;

Romero et al. 2007]

Intuition Developers leverage past experiences and gut feel-

ings to identify and resolve issues, based on in-

stinctive insights.

follow intuition [Böhme et al. 2017; Mur-

phy et al. 2008]

Follow data flow Tracing objects and variables to understand how

data moves and transforms within the system,

thereby identifying potential issues.

follow data flow [Murphy et al. 2008; Peng

et al. 2016; Romero et al.

2007; Subrahmaniyan et al.

2008]

Follow control flow Tracking the program’s execution path to under-

stand the sequence of operations and identify de-

viations from expected behavior.

follow control flow [Murphy et al. 2008;

Romero et al. 2007]

V
R

Spatial memory Working with a VR interface reduces the strain on

spatial memory and enhances cognitive abilities

by allowing developers to interact with code in

an immersive 3D space and improves navigating

source code.

move player

open window

move window

close window

[Cockburn and McKenzie

2002; Tavanti and Lind

2001]

E
x
p
e
r
i
m
e
n
t
a
t
i
o
n

Problem formulation Participants are stuck and demand guidance from

the study experimenter.

participants want help

Assistance Participants have questions about the study setup,

or they need to be reminded of the think-aloud

protocol.

follow protocol

intervention

Bug found The experiment ends because the bug was found. describe bug

suggest bug-fix

confirms bug

Bug not found The experiment ends because participants are un-

able to find the bug.

experiment ends

and the resulting mental models of the programs, are only build by successful novice developers,

while less successful ones merely read the code without comprehending and gaining a deeper un-

derstanding. While program comprehension emphasizes a high-level understanding of the program,

inspect source code focuses more on detailed examination of specific code segments. It is frequently

mentioned in the literature as a strategy where developers read and analyze the source code. This

debugging strategy is often a component of other debugging strategies [Böhme et al. 2017; Hirsch

and Hofer 2021; Murphy et al. 2008; Peng et al. 2016; Subrahmaniyan et al. 2008].

Planning is a strategy where developers create structured plans, such as to-do lists, to system-

atically guide the debugging process. This can include meticulous inspection, such as found by
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Subrahmaniyan et al. [2008], where developers track specific code sections and execution paths they

had investigated and noted those still remaining, ensuring no part of the codebase was overlooked.

Simulation involves mentally simulating program execution to understand its behavior. This

strategy requires significant time spent reading code and considering its dynamic aspects without

directly executing it. Romero et al. [2007] found that participants focused on code windows,

commenting on the program’s dynamic aspects without actual execution. Similarly, Eisenstadt

[1997] combines simulation, code inspection, and speculation in the inspeculation strategy.

Scientific strategy involves applying systematic, evidence-based methods to identify and re-

solve bugs. This strategy includes causal reasoning, hypothesis testing, and conducting controlled

experiments. Several studies highlight how developers use scientific methods by setting break-

points, examining program states, and formulating hypotheses. This way, developers can precisely

identify and resolve issues by systematically exploring a program’s behavior under controlled

conditions [Eisenstadt 1997; Gould 1975; Perscheid et al. 2017; Romero et al. 2007].

Intuition draws on experience, pattern recognition, and sense of what “looks right” to developers

to identify and resolve bugs. It leverages the developer’s familiarity with common coding patterns

and past experiences. It is used by novice developers as well as experienced programmers. While

beginners often rely on intuition, particularly when they recognize patterns in the code that “don’t

look right" [Murphy et al. 2008], experienced developers often draw on their experience with similar

problems and previous patches [Böhme et al. 2017]. Experienced developers use their intuitive

sense of where issues are likely to occur, often bypassing more systematic methods in favor of

quicker, experience-based solutions.

Follow data flow and follow control flow are widely used debugging strategies [Murphy et al. 2008;

Peng et al. 2016; Romero et al. 2007; Subrahmaniyan et al. 2008]. Both involve tracing information

through the program: Following the data flow focuses on tracking and reasoning about variable

values, while following the control flow involves tracing the sequence of executed statements.

Both strategies help novice and experienced developers identify discrepancies that may indicate

bugs [Murphy et al. 2008; Romero et al. 2007].

Together, these studies provide a rich understanding of the strategies employed by developers

during the debugging process. By examining both empirical studies and anecdotal evidence, this

body of research sheds light on the varied and complex nature of debugging strategies, informing

the development of more effective debugging strategies and tools. However, we found that existing

studies are not consolidated in terms of identified debugging strategies, including different levels

of abstraction for debugging strategies, contradictory definitions of debugging strategies that

often apply only in specific study setups, or strategies that resemble other identified strategies,

making them hard to distinguish. For instance, several studies report that developers use a scientific

strategy [Eisenstadt 1997; Gould 1975; Perscheid et al. 2017; Romero et al. 2007], where they generate

a hypothesis about the reason or fix for a bug and then test this hypothesis. However, this requires

to comprehend the program, which is another identified strategy [Johnson et al. 1982; Murphy

et al. 2008; Romero et al. 2007; Vessey 1985] and understand the code, developers need to reed code

artifacts, which, in turn, overlaps with reported strategies of following data flow [Murphy et al.

2008; Peng et al. 2016; Romero et al. 2007; Subrahmaniyan et al. 2008] and control flow [Murphy

et al. 2008; Romero et al. 2007]. Although these strategies have been independently identified

and proposed, they clearly overlap. This overlap makes it difficult to determine which strategy is

being used at any given time, complicating the development of tool support or training for specific

strategies. In general, this lack of consolidation in the landscape of debugging strategies prevents us

from recommending specific strategies or starting points for debugging configuration-dependent

performance bugs. Thus, we develop a much-needed new view of the debugging process, described

in detail in Section 4.
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3 Study Design
3.1 ResearchQuestions
Debugging is a complex, time-consuming, and often frustrating activity. It involves different cogni-

tive demanding activities, including deciding whether a bug originates from a faulty implementation

or is a consequence to be expected, for example, through activating or disabling functionality (e.g.,

by de-/selecting configuration options). Ultimately, developers need to understand the root cause

of the problem. To support them, we equip developers with SoftVR, our immersive tool for debug-

ging, and ask them to reason about a bug, during which we observe the different approaches that

developers use while debugging. We pose the following research question:

RQ1 What debugging strategies do developers use when debugging performance bugs?
We found that existing debugging strategies in the literature are not consolidated. This compli-

cates or hinders analyzing debugging strategies. Even if this is not the case, it might be beneficial

to view the process of debugging on another level of abstraction, which is more consolidated and

enables better derivation of actionables. Thus, we formulate a follow-up research question:

RQ2 How can we describe the debugging process in a structured way?

3.2 SoftVR: An Immersive Virtual Reality Tool
We use SoftVR as environment, as our study requires the ability to directly observe how developers

debug. Traditional methods, such as think aloud protocols, can miss critical information, especially

when investigating performance bugs, since IDEs do not provide all necessary information (i.e.,

hot spots, important configurations, control and data flow, etc.) in a single environment [Velez

et al. 2022]. SoftVR leverages the advantages of virtual reality tools, offering immersiveness and

unlimited 3D space, similar to other immersive systems [Andrews et al. 2010; Bandyopadhyay 2020;

Lisle et al. 2021; Moreno-Lumbreras et al. 2024]. This allows developers to position code windows

freely in the space and inspect them, making their interactions with the code and focus on specific

areas observable, which is the main purpose of SoftVR.
SoftVR has two main components: (i) a call-graph visualization and (ii) specific code windows.

First, the call graph provides an overview of the system’s control flow, showing classes from the

main method to the hot-spot; it can be positioned anywhere in the 3D space. Second, code windows

can be opened from the call graph or by following method calls, with method calls highlighted in

both the graph and code. This setup ensures that all necessary debugging information is available

in one environment, so we can track developers’ interactions and the information they pursue.

Note that SoftVR is not meant for performance debugging in the wild, but as an experimental

instrument for observing cognitive processes and developer behaviors. We provide all videos of the

user study
2
illustrating the use of SoftVR. The video demonstrates how participants interact with

the tool, highlighting its capabilities.

SoftVR has several advantages for experimenters and developers. First, there is unlimited space

and an immersive nature of SoftVR (cf. Figure 1). Multiple code files can be displayed simultaneously

without introducing cluttered, multiple hidden tabs. With the simultaneous display of files, we can

directly observe developers’ debugging strategies without having to trace their actions through

opening, closing, and reopening code files.

Second, developers can exploit the unlimited space in SoftVR and structure multiple opened

files according to their needs. This reduces the cognitive load, for example, by eliminating the

need to decide whether to revisit closed files or by reducing the distance between two related files.

Additionally, SoftVR can show multiple information in one place. In traditional debugging setups,

2
The videos are available in our companion repository: https://doi.org/10.5281/zenodo.14825306
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multiple views and tools are necessary to show code-level performance information, control and

data flow information, and the call graph [Velez et al. 2022]. Switching between multiple tools puts

unnecessary strain on the working memory [Andrews et al. 2010; Bandyopadhyay 2020; Lisle et al.

2021].

Despite its advantages, SoftVR presents several challenges. First, we must ensure that the devel-

oped tool and its features empower developers to debug efficiently. Given that most developers are

used to traditional IDEs, SoftVR’s unfamiliar interface may threaten validity by requiring additional

acclimatization time, potentially biasing results. Participants must therefore be given adequate

time to familiarize themselves with the environment and training on how to use SoftVR’s features.

Additionally, an adequate number of breaks must be provided to minimize potential physical side

effects of VR headsets, such as motion sickness or headaches. These factors increase the time and

effort required for the study. To ensure that SoftVR, the training sessions, and breaks are mitigating

inherent challenges of VR, we conducted two pilot studies (described in Section 3.4).

3.3 Study Setup
We have conducted our user study in a dedicated room at our institution. Participants put on the

Valve Index VR headset with two controllers: one for navigating the VR environment and the other

for interacting with the system. We provide a 3x3 meter obstacle-free space to move freely. All

participants use the same setup to ensure consistent conditions.

In the SoftVR environment, participants begin in an empty virtual space with a ground floor

and a distant horizon. They can access the call graph via a terminal attached to their left wrist.

Code windows can be opened from the call graph or by following the control flow of existing code

windows. Participants can physically move and turn around within the 3x3 meter area in real live

and within the VR environment, as well as teleport in the VR space.

3.4 Pilot Study
To deal with the challenges introduced by SoftVR and its setup, we conducted two pilot studies.

In total, nine PhD students and one professional designer tested our setup to ensure that tool,

tasks, and study design are appropriate to answer our research questions. In the first study, we

tested different components of SoftVR, ensuring that our implementation can be used for debugging

purposes and identifying necessary changes to improve the tool. In the second pilot study, we

focused on evaluating the study setup and procedure to verify whether the tasks, the time span, and

the load on the participants is appropriate. In both studies, we used the same real-world software

systems containing real-world bugs as used by Velez et al. [2022]: BerkeleyDB and Density

Converter (described in detail in Section 3.7). In both studies, each participant debugged both

software systems, one after another, with a bigger break in between. In total, we gained three

insights that inform our final study design: First, after familiarizing themselves with SoftVR, several
participants were able to successfully debug the software systems. In the main study, we therefore

introduced a training task to ensure that developers were able to use SoftVR efficiently. Second, the

bug in Density Converter is harder to find compared to the bug in BerkeleyDB, therefore, we

use the first for the main data collection and the latter as a training task. Third, when participants

had unlimited time to debug, several participants complained about physical side effects of SoftVR,
such as headaches and motion sickness after 40 minutes. Additionally, participants who haven’t

found the bug after 35 minutes did not find it the time afterwards. In the main study, we therefore

did not communicate a time limit, but ended the debugging process after 35 minutes to preserve

physical and mental health that may occur using VR headsets.
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Fig. 2. Control flow graph of the subject systems Density Converter (excerpt). Red marks were added after

the study to visualize the path from the main method to the hot-spot. Red circles show the bug position and

red lines mark the path through the methods that has to be traversed to find the bug.

3.5 Participants
We recruited 12 software developers with professional skills, each with a minimum of three years

of full-time development experience. Eight participants rated their career level as senior, four as

junior. Except for two participants, all have experience with VR and rated their experience positive.

3.6 Procedure
Figure 3 depicts an overview of the study procedure. To avoid priming and bias, we told the software

developers that they will debug in a virtual reality environment, not specifically mentioning

debugging strategies. First, we welcomed participants and they completed a questionnaire on

previous experience in debugging, their experience with VR systems, and some demographic

information. After that, we introduced participants to the concept of performance bugs and to SoftVR.
To keep the introduction similar for all participants, we used pre-recorded videos, ensuring as little

variation between different participants as possible. Next, we fitted the VR headset, and participants

familiarized themselves with the tool. We provided a tutorial in which participants followed

instructions on how to interact with different components in SoftVR. Afterwards, participants
completed a training task in which they had to find a bug in BerkeleyDB. We gave participants as

much time as they needed to feel confident in handling SoftVRand understand the task.

Before the main task, participants were given a break to drink and rest. The instructions for the

main tasks were exactly as the ones for the training task: participants received a bug report and

were asked to search for the bug in Density Converter. Participants were additionally asked to

follow the think-aloud protocol [Van Someren et al. 1994], and we recorded audio and video of the

session. This way, we captured exactly what participants saw in VR alongside their think aloud

audio stream. The main task ended either when the bug was found by the participant or after 35

minutes. Participants then filled out a questionnaire and we conducted a semi-structered interview.

Finally, participants were debriefed, and we fully disclosed our research goals. We planned for a

maximum study time of 2 hours (as shown in Figure 3) and the actual average study time was 90

minutes per participant.

3.7 Study Scenario
For both the training and main session we presented a realistic debugging scenario to help our

participants understand the task and create an environment as realistic as possible. In this scenario,

participants acted as a developer who received a bug report from a user of the corresponding

software system. The bug report contains information under which configuration the user is

running the system and what performance outcome seemed unusual to them. We then asked the

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE064. Publication date: July 2025.



FSE064:10 M. Weber, A. Mailach, S. Apel, J. Siegmund, R. Dachselt, and N. Siegmund

participants to use our tool to decide and reason whether the behavior the user observes, is in fact a

bug, and where the bug occurs, or if it is an expected system behavior.

Break

Break

Break

Break

Welcome

Questionnaire

Video: Intro Debugging

Video: Intro SoftVR

VR Fitting

Training Task
BerkeleyDB

Main Task
DensityConverter

SUS

Interview

Debriefing

2 
ho

ur
s

Fig. 3. Structure of the

main user study. Purple

boxes with icons indi-

cate data collection points,

green boxes represent in-

troduction and training

sections, and gray boxes

show welcome, debriefing,

and breaks.

BerkeleyDB is a scalable high-performance database developed by Or-

acle. We use a bug report in which the user reports a loss in performance.

In fact, the bug is due to the interplay of the two configuration options

Duplicates and Transactions, which leads to locking of write transactions

during parallel requests. Thus, the performance degradation is to be

expected under the given configuration.

Density Converter is a multi platform image density converting tool

developed by private open-source contributors. In contrast to Berke-

leyDB, there is, in fact, an error in the code that leads to an erroneous

lower performance. This bug depends on the configuration option frac-
tion, which controls the size of the output image. This bug only emerges

when users change the value of fraction, which complicates bug identifi-

cation. Figure 2 shows the relevant part of the control flow. The hot-spot

method contains two nested for-loops, one iterating over the target width

and one over the target height of the picture. The bug is located in a

sub-tree nine method calls away from the hot-spot. Here, the original

height and width of the image is divided by the value of fraction and

leads to higher target height and width of the image. Usually, an image

should get smaller when provided with a smaller fraction. However, due

to the division instead of a multiplication, the target dimensions becomes

larger, meaning the for-loops in the hot-spot are executed more often

and in turn, the system has higher energy consumption.

3.8 Study Material
Additionally to demographics, audio, and video recordings, we collect

the responses of the participants on the usability and conduct a semi-

structured interview at the end of the study.

System usability scale. To gather insights into the usability of SoftVR,
we use the System Usability Scale (SUS) as a traditional measure that

delivers reliable results for small sample sizes, while at the same time

being time efficient and concise [Bangor et al. 2008; Brooke 1996]. It is

a ten-point Likert scale, five positive and five negative, for which our

participants needed less than ten minutes to answer. For each participant,

we calculate and report a single usability score across all items according

to Brooke [1996].

Semi-structured interview. We developed an interview guide consisting of eight questions that

target three different areas: The experience and usability of SoftVR, perception of debugging

approaches in their usual day job and in SoftVR (RQ2), and subjective opinion and suggestions for

improvement. The latter was included for future improvements of the tool, but is not analyzed

for this paper. For each question, we document potential follow-up questions that the interviewer

could use to get richer and more informative answers of participants. For analysis, we transcribed

the interviews using whisper [Radford et al. 2023] generating an initial transcript that we corrected

and refined during analysis.
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4 Analysis Procedure
In this section we describe our two-step data analysis procedure. To analyze the audio and video

data produced during the study, we used a two-stage approach: First, we analyzed all videos using a

fine-grained coding framework that we derived from our literature review on debugging strategies,

and we coded all material in 15 second video snippets. Second, we analyzed all the videos again to

obtain a framework, in which we can relate existing debugging strategies and gain insights about

the debugging process. We used open coding to identify goal-oriented debugging episodes.

4.1 Fine-Grained Coding
Our fine-grained coding framework is based on the literature in the area of debugging strategies,

as described in Section 2. We generated codes for the coding framework by deriving individual

actions that indicate the usage of a debugging strategy. These codes are displayed in Table 1, column

“Actions”, alongside the strategies from which they originate. Codes generally represent actions

that developers perform when debugging. For instance, for the scientific strategy, we use the codes

state/test hypothesis and accept/reject hypothesis. In total, this led to 12 distinct codes. Next, we

added 11 further codes that describe actions performed in SoftVR (e.g., move windows or move
player) and actions specific for user study scenarios (e.g., participant wants help or suggest bug-fix).
To analyze the videos, we split each recording into 15 second sections. Two authors coded the

first three videos individually by deciding for each section whether one or more of the codes

occurred. Then, we compared the codes: If we noticed a difference in the coding, the two authors

watched the video sequence again, followed by a consensus-oriented discussion. After that, we

coded two additional videos and calculated an inter-rater agreement between the two authors.

We conservatively calculated the agreement by counting only codes that occurred at least once

during the process: the two researchers agreed in 95.8 % of cases in the first, and 98.0 % of cases in

the second video. This corresponds to Cohens’s 𝜅 being 0.84 and 0.82 respectively, which usually

indicates almost perfect agreement [Gisev et al. 2013; Landis and Koch 1977]. The videos of the

remaining participants were then split between the two researchers and coded individually.

4.2 Coding of Debugging Episodes
Our literature indicated that the knowledge about debugging strategies is unconsolidated. That

means that we can not provide guidance for developers when debugging performance bugs. To

overcome this problem, we conducted an open coding without fixed time frames to identify specific

episodes of debugging that are not captured within the fine-grained coding framework. We define

a goal-oriented episode as follows:

Goal-Oriented Episodes: An episode is the time interval in which the goal of a developer does

not change. The transition between two episodes is always characterized by a change in the

goal.

Naturally, whether a developer follows a specific goal is if not stated explicitly by the participants,

a subjective interpretation of the researcher. The following factors aided in identifying debugging

episodes and their corresponding goals:

• Participants were instructed to use the think-aloud protocol, which typically provides insights

into their intentions. If they remained silent for a while, we prompted them by asking what

they were doing to remind them.

• The viewing direction of the VR glasses and the laser pointer, attached to the right-hand

controller, served as effective tools for tracking participants’ focus.
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• A sudden change in the participant’s behavior—such as restless scanning, head tilting, or

erratic movement of the laser pointer—often signals a search for a new focus. These behaviors

vary per participant.

To minimize subjective bias and enhance consistency, two authors individually coded each video,

marking the start and the end of each episode and documenting the goal and behavior of the

developer. Then, the two authors compared the episodes and time frames. When the two authors

were not agreeing on the goal of an episode, they had a consensus-oriented discussion. Within these

discussions, the focus was on building a common understanding of the behavior of the developers.

In some cases, this involved re-watching parts of the videos together, especially when the noted

times differed by more than 10 seconds. After half of the videos, we started to revisit the found

patterns and built a codebook consisting of descriptions of episodes that reoccure across different

participants, which we then used for the remaining videos. Finally, we revisited the codebook again

to ensure consistency across all participants and episodes.

5 Results

Table 2. Outcome and

usability judgements of

Participants, including

scores on the system

usability scale (SUS),

whether the bug position

in the code was reached

(Rea) and whether

the bug was correctly

identified (Des).

ID SUS Rea Des

P1 B Yes Yes

P2 C Yes Yes

P3 C Yes No

P4 B Yes Yes

P5 A Yes Yes

P6 A Yes No

P7 B Yes Yes

P8 B Yes No

P9 B Yes Yes

P10 B Yes No

P11 C Yes Yes

P12 A Yes No

We start presenting the results with general observations of the behavior

of our participants and the usability of SoftVR. Then, we dive into the

research questions, presenting results and implications.

5.1 General Results
All developers could reach the bug location using SoftVR (see Table 2).

However, five developers overlooked the bug or drew incorrect conclu-

sions. Seven out of twelve developers successfully identified the bug and

accurately reasoned about its root-cause. These results indicate that SoftVR
and our study setup presented an appropriate level of difficulty for finding

the performance bug.

This is also confirmed by the usability test that participants did at the

end of the study. We measured usability using the standardized System

Usability Scale (SUS) test [Bangor et al. 2008; Brooke 1996], with results

shown in Table 2. The SUS grades range fromA (superior performance) to F

(failing performance), with C indicating average performance. Developers

rated the usability of SoftVR as very good (indicated by 9 A- or B-grades).

Additionally, three participants rated the usability as average.

In post-study interviews, we gathered feedback from the participants

on their experience with SoftVR. The majority of participants expressed

positive sentiments during debugging, highlighting SoftVR’s functionality
as a valuable aid in identifying and reasoning about performance bugs.

Many participants also indicated that, with certain enhancements, such

as the addition of text search functionality and the ability to pin code regions, they could envision

incorporating a similar system into their daily workflows. Importantly, none of the suggested

improvements were related to fundamental issues with VR itself. This indicates that the implemen-

tation was robust enough for a valid study, as participants focused on minor technical refinements

rather than questioning the approach’s feasibility.

5.2 RQ1: What debugging strategies do developers use when debugging performance
bugs?

Figure 4 provides an overview of debugging strategies and actions used by the developers. On

the left side, we depict the extracted strategies from our literature analysis (see Section 2.2). In
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Fig. 4. Actions performed by the participants during debugging. The left column lists debugging strategies,

the middle column shows the corresponding actions, and the right column lists participants (check marks

indicate successful debugging). The bar heights and the numbers to the left represent the count of 15-second

intervals in which developers performed a specific action.

the center, we state the derived actions per strategy that we used for coding the 15-seconds time

frames. The numbers represent the number of times we found participants exercising this action.

On the right, we show each participant with the number of 15-second time frames that have been

recorded. The main result is the mapping from actions to developers and distribution of patterns.

Both debugging actions code reading and scanning have been frequently used by all developers,

since debugging is heavily based on reading and scanning code for information. The next most used

actions are, follow data flow and follow control flow, which are also used by all developers. For these,

participants have traced the bug through multiple files during the study. Interestingly, simulate
execution, planning, and follow intuition were less commonly used during this study. Notably, 79

times, developers state/test hypothesis, but only 8 of them were answered (state/test hypothesis).
Surprisingly, only P11 read the bug report to improve program comprehension.

A interesting observation is that most developers employ almost the full spectrum of debugging

actions. That is, everyone used the following debugging actions: scanning, code reading, configuration,
hot spot, follow data flow, and follow control flow. Only four participants (P4, P5, P7, P8) simulated

parts of the program execution. Two participants (P11, P12) never formulated a hypothesis, three

participants (P2, P3, P9) never followed their intuition, and three (P4, P5, P6) never formulated a

plan. Overall, all developers used aspects of all debugging strategies from the literature.
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5.3 Discussion of RQ1
Is it possible to infer which strategies developers pursue to find performance bugs, based on the

extracted debugging actions? Considering Figure 4, we can clearly conclude that none strategy is

recognizable. Instead, actions, coming from all strategies, are executed throughout the entire process

and are intermixed for all participants. For example, follow data flow and program comprehension
are both proposed as independent debugging strategies in literature, but our observations show

that developers use them almost always in combination with inspect source code or follow control
flow. Which strategy is actually performed and how they differ remains elusive. So, at least for

performance bugs in a real-world configurable system, the proposed strategies are neither clearly

recognizable, nor can we state which of them are successful. The same actions (and strategies) are

performed in both, successful debugging processes and in failed ones. Based on this result, we

cannot recommend any specific strategy to follow, nor can we clearly identify situations where

further research or tool support might be beneficial.

Software configurability, as a key part of our study setup, requires developers to navigate and

reason across multiple files and to follow data flows that span over distant and interdependent

parts of the codebase. This characteristic makes debugging performance problems fundamentally

different from addressingmany functional bugs, where the root cause is often localized. Performance

issues in configurable systems tend to emerge from the intricate interplay of diverse configuration

options and system behaviors [Chi et al. 2003; Kolesnikov et al. 2019; Mühlbauer et al. 2023; Teng

et al. 2006]. This context could explain why we observed frequent actions such as tracing both

data and control flows and source code inspection during the debugging process. We argue that

our study setup, specifically investigating configuration-dependent performance bugs, yield those

problems which may also appear in other debugging scenarios.

Building on this observation, we question whether the proposed debugging strategies have an

appropriate level of abstraction to describe or categorize approaches to debugging. The fluidity

and intermixing of actions we observed across participants suggest that these strategies might

oversimplify or overlook the nuanced, iterative nature of real-world debugging in highly config-

urable systems. This raises concerns about their practical applicability and prompts further inquiry

into whether new frameworks or tools are needed to better support debugging in these complex

contexts.

5.4 RQ2: How can we describe the debugging process in a structured way?
To answer RQ2, we employ open coding to identify the intention and the current goal of developers
at different steps in the debugging process. By focusing on intentions and goals, we concentrate

more on the human behavior (i.e., thinking) instead of the technical action (e.g., code reading).

Thus, we lift the abstraction to a more goal-oriented, step-wise view of the debugging process.

We identified and extracted different episodes (as described in Section 3). We show an overview

of the debugging episodes in Figure 5 and a detailed view of the debugging episodes in Figure 6.

In total, we identified five goal-oriented episodes that developers go through during debugging.

We added two additional episodes, namely knowledge seeking and pause, which are caused by

the experimental setting and not by the debugging-process. The most used episodes are search,
followed by exploration, which together account for more than 80% of the time. Note that the

average duration of reasoning episodes is much longer than the average duration of search episodes.

Next, we provide a description for each debugging episode:

Exploration. The exploration episode is an initial phase, in which developers seek to understand

the scope and nature of the bug within the software system. This phase is characterized by gathering

information, such as the hot-spot in the code or an influential configuration option, and gaining a
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Fig. 6. Debugging episodes across the study timeline. The upper group represents participants who successfully

found the bug, while the lower group did not. Different colors represent episodes, with consecutive episodes

with the same color indicating a changed goal of the episode. The black dashed line (𝑀) shows the average

time participants spend trying to find the bug in the main task.

comprehensive overview of the system to identify where issues may reside. The exploration episode

is iterative and alternates with other episodes, often requiring several cycles of hypothesis, testing,

and refinement to ultimately narrow down the root cause of the problem. The goal of this episode

is to improve a developer’s understanding of the issue’s context, to obtain a list of potential causes,

or to devise a plan for deeper, more targeted investigation in subsequent debugging episodes.
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Fig. 5. Shares of individual debugging episodes on the overall

debugging time for the episodes exploration (Explo), reasoning

(Reaso), search (Search), aimlessness (NoAim), reorganization (Re-

org), knowledge seeking (Knowl), and pause (Pause). The numbers

in the bars denote the total number of times an episode occurs.

In our study, all developers start

with the exploration episode to get

familiar with the study specific infor-

mation we provided (e.g., configura-

tion options, hot-spot, etc.). Some de-

velopers (P1, P10) do not return to

this phase later on in the debugging

process. For example, P1 did an ini-

tial exploration and followed other

episodes (i.e., reasoning, search, and

aimlessness), without going back to

exploring new information. Further-

more, exploration often transits into

the search episode.

Search. In the search episode, de-

velopers actively seek answers to spe-

cific problems identified during earlier episodes of the debugging process. The search episode

is, similar to exploration, iterative and requires persistence, attention to detail, and a methodical

approach. That is, participants stated that they want to look for some specific information. For

example, P6 stated after the exploration episode around Minute 8 “I need to find the place where
fraction is included." (see P6 in Figure 6). By the end of this phase, the developer aims to have a

(partial) understanding of the cause of the problem and an idea of what causes the bug. This phase

is crucial for transitioning from problem identification to problem resolution in the debugging

process, that is, all seven developers who successfully found the bug went from the search episode
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to the reasoning episode, directly before they identified the bug. All participants used this episode

frequently during the study to search for different information. This episode often follows directly

after the exploration episode. After searching, developers transit into a reasoning or aimless episode.

Reasoning. Developers engage in detailed reasoning episodes to uncover the root cause of a bug.

This can involve hypothesizing potential issues and making tentative guesses. The developer may

examine the roles of various components and consider the high-level functionality of the software

system and configuration options. They might simulate different scenarios to observe how the

system behaves under various conditions. Throughout this process, the developer often questions

internal mechanics and scrutinizes critical sections of the code, formulating hypotheses about the

behavior of specific functions or algorithms. Discussions about observations and conclusions can

occur, potentially leading to the identification of oversights in the code. For instance, P5 stopped

at one point in their search (see P5 in Figure 6 around 22 minutes) and started reasoning about

the system behavior, concluding that they might have gone too far and overlooked the bug. In the

subsequent searching step, P5 stopped at the bug location and performed reasoned again, leading

to the identification of the bug. Similar behavioral patterns occur for P4, P7, and P11.

Furthermore, despite uncovering certain insights, the developer might choose to set aside some

complexities for later if immediate resolution seems impractical. For instance, P11 reasoned whether

a specific variable (numberOfThreads) might be responsible for the bug. They did not take a final

decision, but continued searching for the use the variable fraction, which, in the end, led to the

correct identification of the bug.

Aimlessness. We found episodes in which developers could not find a line of reasoning to follow

or have exhausted their initial ideas, both leading to a state of uncertainty. They have no clear

direction or goal for identifying the bug. The process can involve aimless scrolling through the

code base, reviewing unrelated sections of code, often, without a specific focus. This phase might

include a sense of frustration and dwindling motivation as potential solutions seem increasingly

elusive. Developers in this phase sometimes explicitly expressed their frustration such as P1 “I am a
bit lost trying to find the influence of fraction" (see P1 in Figure 6 around minute 18). Developers may

revisit previously read code areas, review configurations or the hot-spot code again, in the hope of

stumbling upon a clue. This period is marked by the tension between a desire for a breakthrough

and the increasing temptation to abandon the debugging process. If no new insights emerge, the

developer eventually decides to step back from solving the bug. This was no unique case, as we

counted 13 episodes of aimlessness with eight developers during our study.

Reorganization. Reorganization is specific to SoftVR, in that it allows developers to organize and

interact with their source code in an immersive environment. This episode leverages the spatial

capabilities of VR to enhance the debugging process, providing a unique and immersive way to

manage code windows. We found that developers place code windows in different shapes and order

to create a highly customized and efficient workspace that enhances the ability to identify, analyze,

and orient within the code. Instead of reorganizing, we saw that P3, P4, and P10 spawned code

windows directly at their desired positions, making it unnecessary to reorganize them, which can

be seen by the absence of this episode in Figure 6.

Knowledge seeking. Developers communicate that they need some specific information to proceed

with debugging. For example, they require assistance with interpreting Java syntax, particularly if

they are more familiar with languages like Python or Go. In practice, developers may ask an LLM

or just search the Web for such information.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE064. Publication date: July 2025.



Understanding Debugging as Episodes FSE064:17

Pause. Developers may be distracted from the debugging task due to the VR setup, such as when

the VR headset causes discomfort or headaches after extended use. They lose focus on finding the

bug, and when a participant had such problems during the study, we took a break, during which

they took off the VR headset and waited until they felt better. In our study, two participants (P3 and

P6) took a pause from the debugging task. Distraction episodes are not uncommon in experimental

settings, as they may also occur in studies that involve additional hardware devices, such as

fMRI [Peitek et al. 2021], brain wave [Campisi and La Rocca 2014], or eye-tracking studies [Peitek

et al. 2018].

These seven goal-oriented episodes build a framework for understanding what developers intend

to do during debugging a configuration-dependent performance bug. We identified three episodes

that all developers have used while debugging, namely Exploration, Search, and Reasoning. Further,
we found an episode of aimlessness, that slows down or hinders finding a bug.

5.5 Discussion of RQ2
The description of the debugging process in form of episodes, as illustrated in Figure 6, provides a

structured overview and enables reasoning on different phases of debugging. We found that three

episodes are part of every debugging session: exploration, reasoning, and search. Moreover, the

final step of successfully identifying the root cause of the performance bug is always an episode of

reasoning, where the prior episode comes from a search process that, in turn, was mostly triggered

by a reasoning episode. Overall, reasoning appears substantially more often in successful debugging

runs, while episodes of aimlessness seem to be a possible predictor for failures. However, selecting

performance bugs may limit some episodes to performance-specific aspects that do not apply to

functional bugs, such as aimlessness. That is, developers might be particularly prone to frustration

and aimlessness due to the complexity of performance bugs.

Looking closer at the emerging success pattern of alternating search and reasoning, we found that
the entire debugging process could be divided into two phases: (1) information gathering until clear

hypotheses about the root cause can be made, and (2) a targeted search and reasoning to locate and

verify the root cause of a bug. The first phase takes the most time, and it is here when participants

fail. Thus, debugging support should concentrate on this phase, which includes exploration and

search, to establish a hypothesis (i.e., not searching for the bug itself). If participants come to the

hypothesis, it is likely that they also will have a successful reasoning [Alaboudi and LaToza 2020].

Also interesting are cases in which debugging failed. Here, most of the time, the search process

ended in an episode of aimlessness. Entering this episode nearly always indicates failure. More

than half of the participants (P1, P2, P3, P6, P8, P10, P11, P12) had an episode of aimlessness. For
example, P1 was frustrated that they could not find the place in the code where the influence of

the configuration option fraction applies to the dstWidth and dstHeight variable of the resulting

image. While being on the right track, P1 followed the control flow only one step back and

was then uncertain whether is would be beneficial to further traversal back on the call graph.

Fortunately in this case, the reasoning was correct, but the search was too limited, as the bug was

not one, but eight steps away in the call graph, and so the person continued the search. Based on

participants’ comments, we found that either the search took too long or participants could not

find the information they were looking for (e.g., by expecting the root cause of the bug closer to

the hot-spot code region). In addition, they may have had a prior wrong reasoning episode or an

underspecified search target. These are interesting points for supporting the debugging process in

the future in bringing developers back on the right track.
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5.6 Interview Evaluation - Validating Goal-Oriented Episodes
At the end of the study, we conducted a semi-structured interview to obtain usability scores and

general feedback on the study, as well as to let them reason on how they approach bugs in their

daily life. Especially, we asked whether there is a difference in how they approached it using our

setup to assess the validity of our study setup. We found that, when they talk about their own

debugging experiences and approaches, they already use similar patterns in their descriptions to

goal-oriented episodes, we identified. All developers describe their approach in terms of phases, in

which they do different things, depending on what they want to accomplish. This is very similar to

our definition of goal-oriented episodes, in which developers pursue a goal in an episode.

We found that participants mentioned all four episodes that are not specific to VR or the user

study. That is, they described phases of exploration, search, reasoning, and aimlessness. Moreover,

all participants describe a phase of problem-specific exploration at the beginning of their debugging

process. For example, P4 stated: “Normally, I try to get a fairly complete picture of something first."
and P9 asks themselves: “Where does the error come from? What is the context?". Other developers
start by exploring variable values and try to understand how they change, look at bug reports,

exceptions, and stack traces or try to understand code in general, especially if it is not their own

code. Most participants describe phases in which they search for specific information. They often

describe search by following variables and investigating the changes that happen along the data

flow. P9 stated that searching for information also depends on experience in debugging: “At some
point, you develop a feeling for it [where breakpoints need to be set].". Two participants genuinely

addressed a phase of frustration and also suggested solutions on how to deal with it. P9 states

that “[...] there is no point in staying in such a frustrating moment." and suggests to move forward

fast when there is no obvious solution. P10 suggests to step back and revisit already available

information: “What I like to do is to start again from the beginning, perhaps with a clear head. In
other words, abandon the current strategy and start again". Notably, P9 never entered a phase of

aimlessness during the study. Some participants describe reasoning about potential problems as an

important phase of debugging. P9, for example, does reasoning about values at breakpoints. P11

and P12 combine reasoning with formulating hypotheses what the problem could be. For example,

P11 stated “I need to understand what is going on in order to be able to formulate hypotheses".
The results of the interviews show that understanding debugging as goal-oriented episodes is

close to how professional developers think about debugging. This encourages our proposal on

formulating actions based upon this representation of the debugging process.

5.7 Actionables
Guided by the quantitative coding and qualitative interviews, we can derive several actionables for

education, research, and tool support.

Education. Debugging is underrepresented in current CS curricula. Successful techniques on how

to find bugs, how to reason on gathered information, and how to search through a code base or call

graph are often missing. This is not surprising, as empirical evidence about successful measures is

scarce. Even just showing these episodes of debugging and discussing with students the different

phases and goals can be a valuable contribution to existing courses. Episode-specific tasks could

strengthen the skills of exploration (i.e., system comprehension), search (i.e., systematic search

for information in call and data-flow graphs, as well as in the code bases), and reasoning (i.e.,

formulating and testing hypothesis).

Research. It is time to consolidate existing research on debugging strategies. Our results neither

disprove nor neglect the significance of existing strategies. Instead, we call for a more integrated
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approach that reasons how strategies relate to each other, how they are applicable in which

scenarios, and how to best identify them in practice. With our experiment and framework, we

make a first step in this direction, and we call the community to start a joint community effort to

systematically understand debugging.

Tool support. There is support for debugging in IDEs, such as call graphs, variable settings, and

find usages. However and especially in the context of performance and configurability, which

add further dimensions of complexity when locating bugs [Velez et al. 2022], developers need

more support. Concretely, an automated detection of episodes of aimlessness can be a strong tool

to interrupt a path to failure and waste of time. Supporting the formulation of hypotheses and

reasoning (e.g., via LLMs) seem a promising future direction in this regard. Our study provides

detailed insights on future needs for tool support for developers during debugging.

6 Threats to Validity
In this section, we outline the threats to the validity of our study and explain mitigation.

We used a novel tool for conducting the user study and observing developers detecting and

reasoning about a configuration-dependent performance bug. Usually, developers use an IDE for

debugging and, to our knowledge, we are the first who utilized a VR environment for debugging

(apart from early work that used AR for debugging [Reipschläger et al. 2018]). Our tool might

influence developers in how they debug as they are not used to it. However, we implemented several

measures to mitigate such effects: (1) We carefully tested our setup and tool by conducting two

pilot studies; (2) we added multiple stages of training within our setup, ensuring that participants

are able to use SoftVR; and (3) we conducted interviews after the study to ensure participants did

not struggle with the tool or environment. Our pilot studies confirmed the feasibility of the study

setup and demonstrated that the chosen real-world bug can be found by developers unfamiliar

with the software systems’ code.

Using qualitative analysis may limit internal validity as researchers might introduce bias based on

personal experience and attitude. However, using qualitative methods was essential for addressing

our research question and obtaining rich insights from video data. To mitigate subjectivity, we

followed established methods of qualitative studies by creating an initial codebook based on

existing literature and conducting both closed and open coding. Two researchers of the author team

collaboratively coded the data, achieving a high inter-rater agreement, indicating that the coding

is consistent across data. Additionally, assisting participants during the experiment could impact

internal validity. However, interruptions occurred only in two cases: (1) reminding participants to

use the think-aloud protocol if they were silent or too quiet; and (2) prompting them to explain their

reasoning when identifying a potential bug. These interventions were defined based on insights

from pilot studies, ensuring consistent study conditions for all participants.

Focusing on debugging real-world performance bugs ensures high ecological validity. Incorpo-

rating novice programmers, multiple systems, and diverse bugs would either require an infeasible

number of participants or compromise internal validity by introducing additional confounding fac-

tors. Expanding the number of subject systems would similarly extend study duration or necessitate

a significantly larger participant pool, challenging feasibility. Instead, by analyzing debugging in a

real-world system rather than artificial tasks, we capture authentic developer behavior, strengthen-

ing the study’s relevance. However, a broader research program incorporating these aspects could

extend our findings and provide additional insights in future work.
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7 Conclusion
Our study introduces a novel framework for understanding debugging processes of configuration-

dependent performance bugs. Using SoftVR, we observed professional developers and identified

five key debugging episodes: exploration, search, reasoning, aimlessness, and reorganization. This

episodic approach offers a more detailed understanding of debugging, showing that reasoning

episodes are more frequent in successful runs, while aimlessness often precedes failure.

Our findings have practical implications for education, tool developers, and practitioners. As for

education, curricula can be improved by teaching specific debugging episodes to engage students

in successful debugging. For tool development, insights into aimlessness provide opportunities for

creating intelligent debugging assistants, while the significant time spent on searching suggests that

improving search techniques could be of great benefit to developers while debugging. Practitioners

can use our framework to analyze and optimize debugging processes, reducing time and costs.

This research advocates consolidating existing debugging strategies and encourages more inte-

grated approaches for studying and refining debugging techniques. Future work should validate

these episodes across various bug types and development environments and develop tools that

leverage this framework for real-time debugging assistance. By offering a structured view of the

debugging process, our work advances software engineering practice, especially in the complex

realm of configuration-dependent performance bugs.

Another direction for future work is the comparison of VR-based debugging tools with traditional

IDE-based debugging. In this study, we used SoftVR to observe developers during debugging,

allowing us to analyze its applicability and effectiveness. This foundation now enables a direct

comparison between SoftVR and conventional debugging tools to assess their respective advantages

and determine which debugging scenarios benefit more from VR-based tools.

8 Data Availability
A comprehensive replication package is available at our companion Web page

3
. This package

includes: (1) SoftVR training videos, (2) the anonymized videos of the debugging sessions (without

the audio recordings), (3) interview transcripts, (4) our fine-grained coding framework, (5) the

coding framework of debugging episodes, and (6) data analysis and visualization scripts. We

could not include the audio recordings of the video of the debugging sessions, as they cannot be

anonymized to protect participant privacy. Nevertheless, this package enables other researchers

to reproduce our analysis, validate findings, and potentially extend our work, contributing to the

broader understanding of debugging processes for configuration-dependent performance bugs.
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