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Understanding the human brain requires the incorporation of functional interaction patterns that
depend on a variety of features like experimental setup, strength of directed connectedness or
variability between several individuals or groups. In addition to these external factors, there are
internal properties of the brain network as for example temporal propagation of connections, or
connectivity patterns that only occur in a distinct frequency range of the signal. The visualization
of detected networks covering all necessary information poses a substantial problem which is mainly
due to the high number of features that have to be integrated within the same view in a natural spatial
context.

To address this problem, we propose a new tool that transfers the network into an anatomically
arranged origin-destination view in a virtual visual analysis lab. This offers the user an opportunity
to assess the temporal evolution of connectivity patterns and provides an intuitive and motivating
way of exploring the corresponding features via navigation and interaction in virtual reality (VR).
The approach was evaluated in a user study including participants with neuroscientific background
as well as people working in the field of computer science. As a first proof of concept trial we used
functional brain networks derived from time series of electroencephalography recordings evoked by
visual stimuli. All participants gave a positive general feedback, notably they saw a benefit in using the
VR view instead of the compared 2D desktop variant. This suggests that our application successfully
fills a gap in the visualization of high-dimensional brain networks and that it is worthwhile to further
follow and enhance the proposed representation method.
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1. Introduction

The field of experimental and clinical neuroscience is con-
stantly gaining importance [1]. While methods for the analysis
of brain anatomy or brain-behavior relationships improve, large
parts of the functionalities of the human brain are yet to be
discovered. In particular, the investigation of directed information
transfer within the human brain is a growing field of research.
Understanding how the components of these complex neural
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networks within the human brain interact and affect each other
is essential to understand and treat various different neurological,
mental or developmental disorders [2-4].

Interaction and inter-connectivity of neurons or brain re-
gions is called brain connectivity and can be separated into
three categories [5]: structural connectivity refers to concrete neu-
roanatomical connections, functional connectivity describes the
temporal correlations between neurophysiological events of spa-
tially neighboring or remote neuronal structures and finally,
effective connectivity is defined as the directed influence of one
neuronal structure on another, mediated directly or indirectly.
Amongst others, the networks can be derived from various neuro-
physiological recording techniques such as electroencephalogra-
phy (EEG), magnetoencephalography, positron emission
tomography and functional magnetic resonance imaging [6,7].
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Within the last few years, the combination of simultaneously
recorded EEG and fMRI data has received growing interest in
studying neural activity and, still more recently, also for the
investigation of neural connectivity [8,9].

In our work, we focus on functional connectivity derived from
the analysis of EEG time series data. Here, it is assumed that
the underlying functional brain connectivity patterns possess a
certain strength and direction of neural information transfer.
They are thus considered as so-called weighted, directed networks.
Additionally, these networks contain information with respect to
several modes. . The mode space indicates the location of possibly
occurring directed connections within the brain (i.e. position of
electrodes on the scalp). Consequently, this information includes
the anatomical context of information transfer within the brain
network. Temporal evolution of the functional connections is
integrated via the mode time, which is of particular interest when
it can be expected that the network is undergoing change in the
course of a cognitive task. Finally, the mode frequency must be
considered, too, as electrical brain activity is characterized by
typical frequency ranges (also known as frequency bands) of brain
activation that show different properties depending on a mental
state or cognitive task. These frequency-dependent variations do
not only occur in brain activation but also in functional brain
connectivity [10]. Without any further processing, however, the
understanding of resulting brain networks comprising all three
modes at once is impossible. A graphical representation can offer
a useful tool in this situation, yet the effective and intuitive
visualization of such multi-dimensional data remains a major
challenge. Current solutions mainly rely on (1) spatial context
by showing aggregated or reduced data, or (2) crowded abstract
visualizations [11,12]. Regarding (1), aggregation leads to a loss of
detail and the outcome depends on the parameters the data are
aggregated upon (e.g. mean across time or mean within a distinct
frequency band). Data reduction achieved by a preselection of
displayed electrodes has the disadvantage that the overall view
on the brain network as a whole gets lost. Regarding (2), abstract
matrix-like visualizations can integrate time and frequency di-
mensions of the complex data, but they lose the spatial context
making it less intuitive and more difficult to understand.

In order to counteract these limitations, we propose a visual-
ization tool with the goal to fulfill the following five requirements
R1, ..., R5. The approach should

(R1) allow a view on the whole weighted, directed network
comprising all EEG electrodes,

(R2) keep the anatomical context to offer an intuitive under-
standing of brain networks,

(R3) visualize the propagation of connectedness over time,

(R4) integrate various frequency ranges and

(R5) additionally offer the possibility for the application of indi-
vidual, case-specific restrictions (e.g. choice of certain brain
areas or thresholds for minimum connectivity strength of
displayed connections).

Finally, the general demand beyond all these requests must be to
provide an efficient inclusion of all aspects listed above in order
to make the overall perception of the complex visualization as
intuitive and understandable as possible.

To achieve this goal we propose a novel visual analysis tool
in a 3D immersive virtual reality (VR) environment. Electrodes
are displayed in an anatomical arrangement across the human
scalp and the temporal evolution of directed interaction is color-
coded by the edge weights within the brain network. That means,
in contrast to conventional visualization approaches, the color
of the 3D links between brain areas changes along the length
of the edges. Interaction opportunities like selection of distinct
EEG electrodes or filtering via switching between different edge
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weight thresholds offer the possibility to adaptively visualize the
data and enhance spatial perception of appearing patterns within
the brain network. Notably the application offers an effective
way of a non-hypothesis-driven exploration of brain connectivity:
Regions of interest regarding any of the dimensions space, time
and frequency do not have to be known a priori and can be
explored via the immersive 3D view, helping to generate new
hypotheses which had not been in the focus of neuroscientific
research yet.

This work is an extended version of the conference paper “Im-
mersive 3D Visualization of Multi-Modal Brain Connectivity” [13].

2. Related work

Visualization of brain connectivity. From a user perspective,
the graphical illustration of brain networks is merely an instru-
ment for visually exploring observed connectivity patterns. From
a developer’s point of view, the focus is on an appropriate design
and the graphical realization. Triggered by discussion between
neuroscientists and experts in graphical visualization, Kuhlen and
Hentschel propose an interactive tool that joins abstract matrix-
like representations together with comprehensive 3D visualiza-
tions in form of node-link diagrams [ 14]. In [6], several techniques
for the graphical representation of connectomics, including the
visualization of anatomical connections among neurons as well
as static functional networks as for example derived from corre-
lation analysis. For the most part, existing network visualization
tools do not offer or insufficiently offer the possibility to include
a high number of available properties (modes). A common solu-
tion to this problem is the reduction of visualized content. This
can be achieved by restricting the view to a hypothesis-driven
preselection of cortical region/time interval/frequency band, or
a previous agglomeration of data [11]. Another well-established
approach is to apply methods from graph theory in order to
segregate the network into brain regions with similar topological
properties [12].

Origin-destination flow visualization. The main goal of spa-
tially arranged origin-destination (OD) flow maps is to show
connections within a network corresponding to locations in space
[15,16]. That means, the above stated demand for an intuitive
representation of spatial constellations within the network is
absolutely fulfilled (R2). In the case where the sample of origins
(sources) is the same as those of destinations (sinks), a commonly
adapted visualization approach is to duplicate the map. One map
represents the sources of information transfer and the other one
represents the sink of information transfer. An artificial example
is shown in Fig. 1. In 1(a), the network comprising five net-
work nodes is drawn in the form of a 2D node-link diagram. All
connections (network edges) are represented by directed arrows
between the network nodes. In contrast, the OD representation
in 1(b) shows the network in form of two reference spaces,
separating the network into a set of sink nodes and one of source
nodes. The network nodes of 1(a) and (b) correspond to each
other, which is indicated by the respective color.

A possibility to include the aspect of temporally varying in-
formation flow (R3) is proposed in [17], where the connected
lines between the locations are interrupted by heatmaps that
represent the temporal evolution of connections from each indi-
vidual source to all possible sinks. This brings the strong benefit
of supporting the time-dependent evolution of networks but
comes with the disadvantage that the number of drawn heatmaps
increases quadratically with the locations in the network, impair-
ing the ad-hoc readability. The MapTrix visualization [18] omits
drawing all possible connections in the visualization, by com-
bining the origin and the destination map with a corresponding
adjacency matrix that encodes the strength of connectedness
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(a) (b)

Source

Fig. 1. Visualization of a synthetic five-node network. In subfigure (a), a di-
rected network containing D = 5 nodes is shown. (b) provides the corresponding
OD visualization.

between source and sink location. Again, the readability of the
visualization is affected by this combined view. On the other
hand, the complete weighted network can be offered (R1).

Immersive visualizations. Immersive visualizations have been
explored for many data types like 3D graph layouts [19-21],
multivariate data [22], or even multi-user applications on wall-
displays [23]. Yang et al. presented a method for the immersive
visualization of OD data. Several representations of geographic
flow maps are introduced and compared with the final conclu-
sion that the 3D view should be preferred to the 2D alterna-
tive [24]. In [25], the authors survey the VR visualization of large
graphs with the main focus on the navigation through these
high-dimensional 3D networks and the comparison of various
immersive navigation techniques. The impact of a rising level
of immersion is examined in [26] where participants had the
task to identify ground truth clusters within a 2D or 3D scatter
plot respectively. The varying degree of immersion was included
by offering a 2D view on screen and a 3D view on screen as
well as a miniature 3D view in VR and room-scaled 3D view
in VR. Furthermore the authors carefully investigated additional
influence by further aspects such as added noise and different
cluster properties. With regard to various output variables such as
error rate or subjective preference, all 3D variants (including the
3D screen view) outperform the 2D variant by far. Furthermore,
the 3D screen view is less beneficial than both VR versions —
yet, this difference is not very pronounced [26]. All of these
approaches have the great benefit of intuitive recognition in space
(R2), together with the possibility of case-specific interaction by
the user (R5).

To our knowledge, the only tool that allows for an immersive
visualization of functional brain connectivity data is NeuroCave,
a web-based VR application for analyzing the human connec-
tome [27,28]. The tool provides several spatial and abstract views
of the (non-directed) functional connectivity graph which can be
displayed and navigated either on a regular display or in VR.
They found that the latter greatly enhanced general user engage-
ment with exploring the data. In contrast to the non-immersive
mode, it was additionally easier for the users to come up with
hypotheses which they preferred to investigate further. This user
assessment clearly supports our plan to utilize an immersive
VR framework for reaching the goal of an intuitive, motivating
and explorative way of investigating the highly complex brain
networks. However, the application has some limitations. First,
this tool does not support weighted, directed network edges
(R1), as the only option for indicating connections within the
network is to draw linking lines between pairs of network nodes.
This dichotomous way of network visualization implies a loss of
information about strength and direction of information transfer.
Furthermore, the previously described additional data features
like time and frequency (R3, R4) cannot be integrated in the views
the tool provides.

Contribution of the new tool. The literature provided above
is an excerpt of current approaches for dealing with distinct
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aspects of network visualization. Any of them either fulfills a
certain subset of the requirements R1, ..., R5 by nature, or the
methods can be adapted in such way that distinct requirements
of current interest are met. However, neither approach meets
all five criteria at the same time. As already mentioned in the
introductory paragraph, any of the demands R1, ..., R5 renders
an essential aspect of the complete network. Disregarding some
of them entails a loss of possibly relevant information. This is
the reason why we specifically propose a tool that offers a vi-
sualization that combines the entire set of requirements, allowing
an in-depth understanding of brain connectivity patterns without
losing information that is actually available.

3. Processing concept

Any visualization tool has to be realized in consideration of
the data type that has to be illustrated as well as the research
questions that have to be answered. The goal of the application
presented here is to visualize multi-modal brain networks de-
rived from EEG data. More precisely, the research question posed
by the data is the identification of functionally connected brain
regions during visual stimuli processing.

In this section, the cascade of involved processing steps will
be introduced. We begin with the description of recorded EEG
data and the applied methodology for the subsequent calculation
of EEG-based brain networks. Then, the components of our new
visualization tool will be presented, followed by an outline of the
possibilities for the offered user interactions.

3.1. EEG-based brain connectivity

Raw data (EEG time series). We worked with EEG data from
an experiment investigating visual evoked potentials [29]. K = 40
visual stimuli were presented for 1100 ms each and were then
segmented into K = 40 trials lasting from 500 ms before and
1100 ms after the stimulus onset. For the recording, we used the
international 10/20 system, a commonly applied scheme for the
standardized arrangement of EEG electrodes on the scalp [30,31].
According to that system, D = 28 active EEG electrodes have been
placed together with two additional reference channels as well
as three channels to register eye movement. As a preprocessing
step, time series were sampled down to 125 Hz in time resulting
in N = 201 temporal samples [32]. By using that diminished
sampling rate, data size is reduced, whilst all frequency bands
which have been found to be relevant for the analysis of visual
evoked potentials are still covered [33,34].

Derived data (functional brain networks). The described
EEG time series provide an example where multiple features
necessarily have to be included into network analysis [35]. First,
connectivity may have a spatial focus and direction on the scalp.
Second, temporal variation of the experiment arising from the
presented stimuli of the study protocol requires a time-variant
network analysis. Third, network patterns have to be ana-
lyzed depending on frequency bands. For this type of data, time-
variant multivariate autoregressive models (tvMVAR) provide an
appropriate basis for the quantification of connectivity within the
network [36]. We therefore applied the following strategy for the
quantification of multi-modal brain connectivity data.

In the first step, time series are approximated by means of
tvMVAR modeling. A univariate time series [y(1),...,y(N)] €
RY is a vector of N scalar EEG observations at equidistant dis-
tributed samples in time. EEG is recorded simultaneously at D
locations (EEG electrodes) and K repetitions of the presented
visual stimulus (trials of the experiment), resulting in a mul-
tivariate K x D x N-dimensional time-series tensor containing
the segmented stimuli. The time series is approximated by an
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(N — p) x D-dimensional tvMVAR process of order p which is
defined by [37]:

p
Y(n)=Y A'(m)¥(n—r)+En), n=p+1,....N.
r=1

A’(n) € RP* are the temporally varying autoregressive parameter
matrices. The order p denotes the number of previous values used
for the approximation of the present value and E(n) € RPN being
a D-dimensional Gaussian process with zero mean.

For the model approximation, we applied the state-of-the-art
multivariate Kalman Filter algorithm as proposed in [38]. Unlike
other MVAR estimation approaches, the K multiple trials do not
have to be aggregated before or after model estimation. For multi-
trial data, this algorithm has proven to be the best choice as
compared to other Kalman approaches [39]. The order of the
model p, i.e. number of prior time steps that are included for the
current model approximation was chosen under consideration
of Akaike’s and Bayesian information criterion [36,40]. Under
further consideration of estimated tvMVAR spectra as compared
to the model-free Fourier spectra the model order was set to
p = 20 [32].

Based on the derived model coefficients, we quantified func-
tional relationships within the networks by means of time-variant
partial directed coherence (tvPDC). It is a method which is based
on the Fourier transform of the tvMVAR model parameters, to
provide a frequency-selective, time-variant directed quantifica-
tion of connectivity strength within the network [41]. It is im-
portant to emphasize that the quantification of weighted EEG
network edges is derived from a time-series analysis based on
time-variant tvMVAR modeling rather than from raw time series
data.

The Fourier transformed model parameters at time point n and
frequency f is calculated by A(n, f) = >_F_, A"(n)e=>""" [37]. Let
A(n, f) := 1p — A(n, f) with the D x D identity matrix 1p, then
the tvPDC at time point n and frequency f from network node j
to i is defined as

lag(n, f)]

Vo lag(n, f)I?

with a(n, f) denoting the (i, j)-th entry of A(n, f). The value
mi—j(n, f) denotes the strength of connectivity from source node
j to sink node i and can range from 0 (no connection) to 1 (strong
connection). In practice all tvPDC values are > 0, consequently
the graph of EEG network nodes with tvPDC network edges
represents a fully connected graph.

From a mathematical perspective, the complete tvPDC data set
thus represents a three-dimensional tensor covering the modes
frequency x space x time and consists of F x D-(D—1)x N — 1
values. In this work, frequency range for tvPDC analysis was set
to 0-25 Hz with a resolution F = 50 frequency bins, the EEG
setup contained D = 28 active electrodes and for each trial 201
samples in time were recorded (corresponding to a time interval
of 1.6 ms). That means, finally the dimensionality of the tensor
that has to be visualized in this application is F x D - (D —
1) xN—-p 50 x 28 - 27 x 201 — 20. In the context of
network analysis, this tensor contains the values of frequency-
and time-dependent adjacency matrices where rows represent
sink edges and columns the source edges. The entries of this
matrix themselves contain the weights (i.e. tvPDC values) of the
directed edges between the nodes. The diagonal entries of these
matrices are set to zero, because self-connected nodes do not
exist in the networks. Maintaining these zero entries for further
processing leads to a symmetrical memory layout which will be
described in the implementation Section 4.

Tij(n, f) = €[0.1],i#]
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Fig. 2. Extract of the adjacency matrix heatmap panel. Subfigure (a) is
restricted to one time point and one frequency. In (b) the time is fixed, the
frequency varies. The time-frequency map in (c) shows the color-coded tvPDC
values between the currently selected directed channel combination O1 — Oz.

3.2. Visualization of brain connectivity in VR

As already mentioned in the introduction, many applications
require a visualization that comprises all electrodes of the scalp
that have been recorded. A basic possibility for visualizing the
complete network is a color-coded adjacency matrix drawn for
a certain time point and/or frequency (Fig. 2(a)). To include more
information, all frequency-variant maps can be displayed in a
single, large adjacency matrix. This is illustrated in Fig. 2(b),
where color-coded tvPDC values vary across frequencies along
the vertical axis of each cell. Although these views give a good
overview of general network patterns within the brain, they do
not provide detailed information about connectivity with respect
to time and frequency in combination. Fig. 2(c) shows an example
of a directed connection between two prechosen electrodes (O1
— 0z) which includes also the changes over time (drawn across
X-axis).

Yet, none of these views combine all modes of the 4D tensor
and notably also neglect the spatial arrangement of EEG elec-
trodes across the scalp. For that reason, we propose to combine
and link several different visualization techniques that jointly
cover all modes of the tensor. The view we offer to the user is
shown in Fig. 3. In the main view (upper row), a 3D anatomical
depiction of the electrode network is provided: The full time
extended connectivity graph (FTXC) covers the whole time interval
and preserves the anatomical arrangement. It is combined with
the 2D time-selective connectivity (TSC) representation on the very
top, giving a detailed spatially arranged view of the network at a
certain time point. This anatomic view is supplemented by a con-
ventional heatmap panel showing the complete adjacency matrix
in detail. Every entry of this matrix provides a time-frequency
map corresponding to one sink and one source electrode, where
the strength of connections is encoded by color. The view on all
panels are synchronized upon user interaction.

In the following, we give a detailed description of the compo-
nents of our visualization shown in Fig. 3. We start with a brief
discussion on the chosen color mapping. This is followed by the
introduction of the VR main view with the anatomically arranged
view of the network. Finally, the heatmap panel with the detailed
view on the corresponding adjacency matrices of the network
will be described. A video demonstrating the system in action is
provided in supplemental material S1.

Color mapping. Mapping numerical values to colors is a
common process in scientific visualizations. A predefined color
scheme is used to convert scalar values to the corresponding
colors. In this application, such color mappings are necessary to
visualize the connectivity strengths of the edges as well as for
multiple heatmap depictions [42]. By default, the rainbow color
map Jet is chosen, as it is the most commonly used color scale
in neuroscience and known to the domain experts from widely
used brain connectivity analysis tools. EEGlab [43] offers Jet by
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VR main view

R R

Cumm
PSS

Heatmap panel

Fig. 3. Virtual visual analysis lab. This is the view provided to user in VR.
Interactions are possible through grabbing and pointing design to motivate
interactive exploration of brain connectivity data. The VR main view shows the
functional connectivity in the anatomical arrangement. Every tube represents the
temporally varying connectivity from the source electrode on the left and the
corresponding sink electrode. The heatmap panel represents the same network
in a more abstract fashion: In the two adjacency matrices, every entry represents
a directed connection between sink (matrix rows) and source (matrix columns)
nodes.

default and very similar custom rainbow color maps are used in
SIFT [44] and MELODIC [45].

Previous work on color scales [46-48] points out two draw-
backs of rainbow color scale and specifically of the Jet color scale,
though. Firstly, perceived luminance, i.e. lightness, varies in a
none monotonous way. Secondly, perceived color gradients are
not uniform. On the other hand, Reda et al. showed recently
in [49] that rainbow color scales yield the best performance for
the graphical comparison of scalar fields. They attribute this to
the large number of colors with different names that are traversed
in a rainbow color scale and introduce color name variation as a
metric. In our immersive visual analysis approach color mapping
is applied to thin illuminated tubes and heat map panels without
illumination. In both cases lightness variations in the color scale
do not affect our visualizations in a negative way (cf. Fig. 3) as
pointed out for general 3D data visualization in [50]. Uniform
color gradient perception is neither of high importance for color
mapped tubes and heat map panels. Efficient comparison of the
behavior of connectivity strengths along tubes and inside of heat
map panels on the other hand is very important in our brain
connectivity analysis to visually extract patterns from the data.
Therefore, color name variation was more important to us than
uniform lightness and monotonous gradient perception such that
we preferred the use of the Jet color scale.

VR main view: full time extended connectivity graph. For
every time step in every frequency there exists a whole asym-
metric OD matrix, i.e. a fully connected directed graph, in which
each edge encodes its connectivity value. In EEG research, it is
common to reduce the 3D coordinates of the electrodes around
the scalp into 2D coordinates resulting in a plane representation
of all electrodes [51]. The ellipsoid-shaped plane represents the
head viewed from above with a triangle symbolizing a nose to
quickly identify the orientation of the head. The FTXC (Fig. 4(b))
is the main graph of the visualization. It utilizes the enhanced
3D perception provided by VR environments to create a novel
visualization of the brain connectivity data across the whole time
interval. Traditional visualizations of these networks focus on
visualizing a fixed time point and therefore cannot represent the
temporal evolution of brain connectivity. In this graph, source and
sink of the OD data are separated as shown in Fig. 1. A simplified
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(a) TSC

(b) FTXC

TPL g

Fig. 4. VR main view with selected EEG electrode. In (a), the connections are
displayed in form of a 2D head. It shows the network at the time point which
is chosen by time pick layer in (b).

head is visualized as a disk with a triangle on top indicating the
nose position, the hemispheres of the head are colored differently
(green for left and red for right) to simplify interpretation of the
graph from different viewing angles. Tubes connect the origin and
destination electrodes for a selected frequency band. They are
colored corresponding to their tvPDC value over time. Thus, the
FTXC graph offers an insight into the temporal evolution of brain
connectivity patterns.

Origin and destination electrodes can be selected to apply edge
based filtering to the visualized graph. Furthermore, a time pick
layer (TPL) between the origin and destination head allows the
selection of a specific time step by mapping the space between
the head disks to time.

The position of the time line is dynamically adjusted to not
occlude the FTXC graph while being as readable as possible. For
this, we consider the cylinder around the TPL connecting the
source and destination head disks. Based on the tracked head
position of the user, we compute the top silhouette line of the
cylinder and position the time line to coincide with this.

VR main view: time-selective connectivity. In Fig. 4(a), the
TPL is transferred into a node link diagram with the tvPDC values
that are mapped to edge colors. While FTXC shows the entire
temporal evolution of the network, moving the TPL creates and
animation of the temporal network evolution in the TSC. TSC and
FTXC view have the purpose to supply the user with a means of
an intuitive exploration and analysis of brain connectivity. This is
mainly due to the anatomical arrangement of EEG electrodes as
well as to the condensation of networks to the limitation of the
view on certain time and frequency points. In addition to these
visualizations, a 2D heatmap panel representation was designed,
showing the entire network for all electrodes, time points and
frequencies at once.

Heatmap panel. A heatmap panel with the common adjacency
matrices and time-frequency maps (Fig. 3, lower row) is also
included into our application. These three additional representa-
tions complement the TSC and FTXC visualizations: one adjacency
matrix for the current time and frequency, one adjacency matrix
comprising all frequencies for the complete time interval and one
time-frequency map of a predefined directed channel combina-
tion. The main purpose of this visualization is to provide a view
on the time-frequency map of the selected OD edge in the VR
main view. In addition, the complete network which might help
to exploratively find relevant time intervals or frequency bands
that should be explored in the detailed views.

3.3. User interaction

We geared all aspects of user interaction in VR towards mo-
tivating data exploration: Users interact with the visualization
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Table 1
Memory footprint of main data structures and tube geometry. Note that we
store two tubes per edge, one each for the FTXC and TSC graphs.

Data structure Complexity Data type Size (MiB)
PDC tensor FxD?>xT Float 27.07
Color texture Float RGB 81.20
Sorted PDC list F-D*.T Float 27.07
Max-PDC array F x D? Float 0.15
Tube geometry 2.F-D?.(24+2) Float vec4 31.10

via natural pointing and grabbing actions, and the virtual visual
analysis lab compiling our visualizations (see Fig. 3) is sized such
that users can physically walk some steps to view it from different
angles.

Grabbing and pointing. The TPL has to be selected by the user
in order to move it to a specific time step. Since the user has to
reach the time pick layer to grab it, it encourages moving into the
3D scene and viewing the graph from different perspectives.

Electrodes can be selected to apply a spatial filter based on
the selected origin and destination electrodes. This is shown in
Fig. 3(a) and 4: While in Fig. 3(a) all network edges are displayed,
Fig. 4 exclusively shows the connection from the chosen source
electrode (in this example, electrode FT8). In contrast to the TPL,
the electrodes are small. Furthermore, the origin and destination
electrodes are far away. Therefore, a pointing interaction using
a ray emanating form the controller tip is offered to the user
in order to prevent fatigue from moving back and forth while
selecting different origin and destination electrodes.

In the heatmap panel, it is possible to point to and select a
certain directed channel combination from the adjacency matri-
ces. A detailed time-frequency heatmap of the tvPDC values is
then shown as a third view on the data and the corresponding
electrodes are selected in the FTXC/TSC graphs. An example is
given in Fig. 2, where (c) shows the connection from electrode O1
to Oz. All time points are included (x axis), as well as the whole
frequency range (y axis).

Additional controls. More abstract parameters are realized as
control elements directly on the heatmap panel. There, users can
adjust the frequency of interest for the FTXC/TSC graphs and the
single-frequency OD matrix, as well as the percentile for tvPDC
threshold filtering of network edges. In Fig. 3(b) for example, the
frequency is set to 10 Hz and only connections higher than 90%
of all tvPDC values are displayed.

Finally, not all parameters of the visualization can or should
be exposed inside the VR environment. We relegate more obscure
settings relating e.g. to scene geometry or renderer properties to a
traditional GUIL. It offers controls for all available parameters that
can be tuned by the user.

4. Implementation

To prototype the visualization for the user study, we built
upon our in-house C++/OpenGL visualization framework [52]. The
concept only requires fairly standard rendering and architecture
— yet, a few noteworthy design decisions were made in the
implementation to quickly achieve a working prototype. In the
interest of reproducibility, we want to give a brief rundown of
them in this section.

Data management. For the purpose of our visualization, a
single loadable data set consists of the full tvPDC tensor from one
individual, plus electrode definitions (position and label). We rep-
resent the tensor as a dense time-major 3D array of dimensions
FxD?x T, where T = N —p refers to the effective number of time
steps in the data without model bootstrapping. Edges connecting
an electrode with itself are not removed to keep the memory
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layout symmetrical. Instead, we set the corresponding PDC values
to 0 leading to D? entries in the spatial mode rather than D(D—1).

We pre-compute the Jet-mapped colors and store them in
a second 3D array of identical structure. We decided against
on-the-fly color mapping because it stays constant for a sin-
gle data set, while using the GPU texturing units becomes very
straightforward (see graph rendering below).

During data import, we also create and keep a sorted list
of PDC values over all frequencies and time steps. This enables
efficiently determining the global coherence threshold from a
percentile (in O(1) time) and vise-versa (in O(logn) time), main-
taining interactivity when either is changed by the user. Finally,
we store the largest PDC value per graph edge and frequency to
quickly filter out whole edges that exhibit no coherence above
the selected threshold.

The raw data set sizes generated by the tvPDC analysis for typ-
ical EEG studies easily allow for this generous usage of memory —
see Table 1 for the memory footprint of the main data structures
and Fig. 5(a) for an illustration of their layout.

Graph rendering. All geometry is created during scene ini-
tialization, including the tubes representing the OD edges in the
FTXC and TSC graphs. For rendering, the tubes are tessellated as
cap-less cylinders using one triangle strip per connection. For the
FTXC graph, the cylinders are clipped by the two head planes. We
use 12 segments for the cylinder cross section, which is sufficient
to make the tessellation visually indiscernible under normal use.

Again, in order to simplify indexing, we also keep all edges
that connect an electrode to itself. While they would be filtered
out under normal circumstances anyway due to their PDC value
of 0, we create degenerate triangle strips for them in order to
guarantee that the corresponding tubes are never visible.

Tube color is being applied in the fragment shader by tex-
turing. We transfer the result of the color mapping to a 3D
texture, and select the proper color series by fixing the v texture
coordinate per tube such that it corresponds to the correct graph
edge slice. The selected frequency is provided to the shader as
a uniform variable and converted to the u coordinate for the
texture lookup. w varies along the tube from O to 1, resulting
in smooth color interpolation between time steps. This requires
additional care for the FTXC graph: The color gradient should
always be aligned with the time axis rather than the cylinder axis
(see Fig. 5(b)). To ensure this, we project the vector from origin to
destination head planes (which exactly corresponds to the time
axis in VR world space) onto the tube, yielding the desired w
parametrization.

To apply the threshold/percentile filtering, we compile the
indices of non-filtered connections using the pre-computed max-
imum PDC values per graph edge and frequency, creating a batch
of tubes to render in a single draw call.

Heatmap panel rendering. The OD adjacency matrix overlays
consist of individual quads per cell. Their positions indirectly
encode the edge index, which can be used to select the appro-
priate v slice from the 3D color texture. For the single frequency
OD matrix, u and w are fixed and provided to the shader via
uniforms according to the current frequency and time user selec-
tions, respectively. For the all-frequencies OD matrix, each quad
receives the u texture coordinate as a vertex attribute such that
it vertically varies from 0 to 1, w is again dependent on the
user-selected time and provided in a uniform variable.

The time-frequency heatmap is rendered as a single quad
with u and w texture coordinates varying along the vertical and
horizontal edges, respectively. Here, the v slice depends on the
user-selected electrodes.

VR Interaction. We exclusively use controller touchpad events
for triggering an interaction with the scene, as we found that
the resulting smaller forces on the controller improve pointing
precision.
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O head plane, w =0

& D head plane, w =1
(a) (b)

Fig. 5. (a) Main data structures. Top row: 3D arrays storing the full tvPDC
tensor and pre-computed Jet-colors. The subscripts in the arrow labels indicate
storage order. Middle and bottom row: sorted list of all PDC values and 2D array
of maximum PDC values per edge and frequency. (b) Setup of tubes in FTXC
graph. The vertices of the cylinder mantle lie on the two head planes. Setting
their w texture coordinates to 0 and 1 respectively yields a world-space color
gradient V¢ that is aligned with the time axis f rather than the tube axis d.

Controller point-and-select interaction is implemented by per-
forming intersection tests of the controller rays with the oriented
bounding boxes of all interactive scene objects whenever a con-
troller pose changes. This brute-force approach is provided as-is
by the underlying framework, and we found that the low number
of interaction points in our lab scene made an acceleration data
structure unnecessary. Grabbing-and-pointing of the TPL uses the
oriented controller bounding box instead of a ray.

Additionally, we mapped several more user-settable param-
eters to various controller buttons. Most notably, selected fre-
quency and the PDC threshold are adjustable using the controller
directional pad.

5. Evaluation
5.1. Evaluation strategy

In a first qualitative user study, the overall experience and us-
ability of the application have been evaluated. The VR application
was tested with an HTC Vive Pro and two HTC Vive Controllers. A
group of six male experts was included to test and evaluate the
application. Three of them were Ph.D. students in the research
field of clinical neuropsychology all working directly with EEG
data. One participant was a neuroscientist researching on EEG
network analysis in experimental psychological settings and is
especially familiar with brain connectivity networks and their
evaluation. Another participant was a psychologist working on
EEG evaluations and one was an electrical engineer developing
data-driven processing methods to predict EEG-based activity
behaviors. The other three participants were computer scientists,
being not familiar with research on brain connectivity. They were
chosen to give feedback from a technical and usability point
of view. Two of them were working in the field of computer
graphics and had experience with VR. One participant was a
front-end developer with experience in user interface design [53].
For convenience, the two groups are denoted by neuro experts and
VR experts in the following.

In the beginning, the participants were briefly introduced to
the basics of brain connectivity and to the tvPDC data set. This
was especially necessary for the participants who were not famil-
iar with the field of neurophysiological research. Consequently,
the duration of this pre-training depended on individual partici-
pants. A non-VR time-frequency OD matrix of causal connectivity
data (as shown in Fig. 2(c)) was presented and described as one
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current existing solution. This should help the users to under-
stand the visualizations in the heatmap panel. Furthermore, VR
application was explained, including all displayed components
and possible user interactions. This was especially important for
those participants who were not familiar with the usage of VR
equipment. It was clarified that all parts of the application have
been understood.

After this introduction, the participants entered the virtual
environment to test the application. They were instructed to
consistently report what they want to achieve, what they are
doing, what they had expected to happen and what actually
happened (thinking-aloud method [54]). This short warming-up
phase was aimed to give the participants the possibility to get
used to the general virtual environment and the controllers.

Then, the test phase started. During that part, the new ap-
plication should be used for exploring the calculated EEG brain
networks (see paragraph 3.1). For that purpose, the participants
had to perform 14 tasks covering three aspects:

e Interaction. Example: “Move the TPL. Observe and describe
the effects it has”.

e Spatial recognition. Example: “Pick a point on an edge of
your choice in the middle of the graph. Follow the edge to
determine its origin and destination”.

e Heatmap panel. Example: “Use the All-Frequencies OD Ma-
trix and move through time to look for interesting connec-
tivity values in other frequencies”.

The set of tasks was designed in such way that the participants
were faced with all aspects considered in the final questionnaire
at least once during that phase. In the supplementary material S2,
a list of all devised tasks can be found.

Finally, the participants were asked to fill a questionnaire
(supplementary material S3) where they had to respond how
much they disagree or agree with each statement on a five-
level Likert scale [55]: strongly disagree (1), disagree (2), neither
(3), agree (4) and strongly agree (5). The statements randomly
alternate between positive and negative expressions so that the
respondent had to read each statement carefully and make an
effort to think whether to agree or disagree. For analysis and
visualization, the ratings of these alternating items were finally
transferred to the converted Likert scale. This transformation
converts the participants’ ratings of negative expressions into
the equivalent rating value for the according positive expression
by subtracting the negative rating from 6. As an example: If a
participant strongly disagrees (1) with the negative expression “I
did not feel encouraged to make use of the time-pick-layer.”, the
value is converted into 6 — 1 = 5, meaning that the participant
strongly agrees (5) with the corresponding positive expression “I
felt encouraged to make use of the time-pick-layer.”.

The first part of the questionnaire (supplementary material
S3) covered the overall experience of the VR visualization as
compared to the inspection of non-VR time frequency adjacency
matrices. This was followed by more detailed questions concern-
ing the TPL, the 2D graph and the heatmap panel. Finally, ten
items assessing the system usability scale (SUS) [56,57] were
used to receive a global assessment of the system’s usability.
To obtain a qualitative assessment of the usability, the answers
to the SUS questionnaire are used to obtain a general grading
scale [58,59]. First, the Likert scale SUS results are converted into
the SUS score reaching values between 1 and 100. The SUS score
is then transformed into an ordinate rating scale, ranging from
A+ to F, which provides an intuitive impression about the general
usability of a tool in form of a letter grade.
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SUS statements and results from the user study questionnaire. Mean, standard deviation (SD) and median across subjects are listed for each
statement. Positive statements are displayed in green, negative in red. Agreement of participants are encoded via a five-level Likert scale:
strongly disagree (1), disagree (2), neither (3), agree (4) and strongly agree (5).

Statement Mean SD Median
24. 1 think that I would like to use this system frequently. 4.0 0.00 4
25. 1 found the system unnecessarily complex. 2.0 0.58 2
26. 1 thought the system was easy to use. 4.2 0.37 4
27. 1 think that I would need the support of a technical person to be able to use this system. 1.7 0.47 2
28. I found the various functions in this system were well integrated. 3.7 0.47 4
29. I thought there was too much inconsistency in this system. 2.0 0.00 2
30. I could imagine that most people would learn to use this system very quickly. 3.5 0.96 35
31. I found the system very cumbersome to use. 1.7 0.47 2
32. 1 felt very confident using the system. 4.2 0.69 4
33. I needed to learn a lot of things before I could get going with this system. 23 0.94 2

® Neuro expert  ® VR expert

Mean score (converted)

16 21

Item

Fig. 6. Mean questionnaire results. For every questionnaire item 1,...,33
the two colored bars represent the mean Likert scale value (mean across each
expert group). Several questions had only to be answered by participants with
a related neurophysiological background. The gray box highlights the ten SUS
items at the end of the questionnaire.

5.2. Results

In this section, we present a summary of basic evaluation
results. Due to the small group size of six participants, all reported
results are based on descriptive statistics and do not include any
inferential statistics drawn from hypothesis testing. The answers
of the participants to the complete questionnaire including the
SUS items are listed in the supplementary material S4. Note that
the table provided S4 contains raw ratings rather than derived
values based on converted Likert scale.

To provide a rough overview about general assessment of
neuro expert group vs. VR expert group, Fig. 6 shows a bar plot
of converted Likert scale values covering all answers to the 33
questionnaire items (mean across each group). The last ten items
contain the SUS-related questions, highlighted by a gray box. At
first glance, the ratings of the neuro expert group seem lower
and more broadly spread than those of the VR experts. This
is confirmed by the group-dependent overall mean (meaneyso:
3.98, meanyg: 4.33) and standard deviation (SDpeuro: 0.74, SDyR:
0.64). Interestingly, for the neuro expert group, the items related
to the application which had only to be answered by the neuro
experts have been rated slightly higher (mean: 4.07) than the
more general items (mean: 3.88).

General feedback. In general, the new visualization concept
received positive feedback: Five out of six participants agreed
or strongly agreed with liking the overall experience (mean:
4.00, SD: 1.0). The users think that the visualization is suited for
analyzing functional connectivity data in a professional context
(mean: 4.33, SD: 0.47) and compared to a non-VR OD matrix the
application gives a better complete overview of the data (mean:
4.33, SD: 0.47). The question whether the visualization generally
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motivates them to analyze and explore the data further is scored
in the middle area (mean=3.33, SD: 0.47). Yet, compared to a
non-VR OD matrix they feel more motivated to further explore
the network and reported that the detailed view in the heatmap
panel provides a beneficial complement.

FTXC, TPL, TSC. Compared to a time-frequency view of all
adjacency matrices, all but one agreed that identifying the spatial
context of connectivity after seeing an interesting color is easier
with the TXC Graph solution (mean: 3.83, SD: 0.90). They further-
more agree or strongly agree that the strength of connectivity is
well-presented by the chosen color map (mean: 4.67, SD: 0.47)
and think that the connectivity information is perceived in a
more detailed way regarding temporal resolution (mean: 4.33,
SD: 0.47). Most participants reported that it was not easy to
distinguish between the edges within when the fully connected
graph was drawn, or the threshold for the drawn edges was set
very low (mean: 3.33, SD: 0.75).

The additional time-selective filtering option (time pick layer)
received positive feedback, especially corresponding to the time
point of the visual stimulus. In general, neuro experts gave some
more thoughts about the usage in a professional context than the
computer scientists. All participants considered the TSC Graph
as helpful, while the opinions varied concerning the question
whether the graph improves the identification of spatial relations
between connected electrodes.

Regarding some controller interactions, it was observed that
initially multiple users without any VR experience had trouble
finding the grip key to undo the electrode selection and tapping
the touchpad instead of pressing it. Furthermore, most users tried
to point and select the TPL instead of directly moving it. All
these issues were resolved after the interactions were executed
correctly once. These initial problems could be related to the
mentioned scores at the end of the system usability passage of
this section. It was also observed that when users were unsure
about key mappings they did not seem to look at the interaction
control overview printed on the heatmap panel.

Heatmap panel. The heatmap panel and the additional
heatmap representations were perceived as a useful extension
of the FTXC Graph and especially well suited for exploratory
data analysis. All experts found the single edge time-frequency
heatmap very useful (mean: 4.66, SD: 0.47). The One-Frequency
OD Matrix (mean: 4.00, SD: 0.82) and the Electrode Selection
Heatmap (mean: 4.00, SD: 0.82) also received positive response.
Five out of six participants liked the general position of the
heatmap panel (mean: 3.83, SD: 0.37). It has though been criti-
cized that the panel is too big to receive a general overview from
all positions in space, especially for analyzing OD matrices while
moving the TPL to the end of the time line.

System usability.
Table 2 lists the Likert scale mean, standard deviation (SD)
and median of the SUS questionnaire across the whole group.
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100

[ Neuro expert
VR expert

Mean value

SUS score

Participant

Fig. 7. SUS score of each participant. The bars represent the individual
assessment regarding the general experience of the new tool. The neuro expert
group reported a usability slightly below the overall average of SUS scores
(74.58), while two of three VR experts assess the tool better as compared to
the group mean.

All participants agreed that they would like to use this system
frequently (mean: 4.0, SD: 0.00). The individual ratings can be
found in the last ten rows of the table in supplementary material
S4. Unnecessary complexity (mean: 2.0, SD: 0.58) was rated low
and easiness to use (mean: 4.2, SD: 0.37) was rated high. Notably,
participants with prior experience in VR stated the highest SUS
values.

Two statements that produced controversial results are the
items: “I would imagine that most people would learn to use this
system very quickly.” (mean: 3.50, SD: 0.96) and “I needed to
learn a lot of things before I could get going with this system.”
(mean: 2.33, SD: 0.94). Both relate to the initial introduction
phase. The participants with VR experience rated these state-
ments very positively while two of the brain activity experts gave
a more moderate feedback.

Fig. 7 shows the resulting SUS score for each participant. The
SUS scores range from minimum 62.50 to maximum 87.50 with
an overall mean of 74.58 which represents a good system usability
(letter grade B). According to [60], this SUS value indicates a
system usability considerably above the average of other studies
which is 68.

6. Discussion and conclusion

For our user study, we included experts from the field of EEG
data analysis as well as computer scientists. The results yield
positive feedback for exploratory data analysis especially in the
use case of non hypothesis-driven research. Participants liked the
overall experience and experts with background in brain activity
analysis think it would be helpful using this application in a
professional context. This indicates that an immersive 3D view
of anatomically arranged brain offers a support for a data-driven,
intuitive exploration of temporally varying, multi-dimensional
brain networks.

So far our proof of concept study includes a small group of
six participants which merely allows a descriptive analysis of
given feedback. In our future work, we will considerably increase
the group size and investigate whether the application might
significantly help for the visual analysis and comparison of brain
networks between several subjects, groups or experimental tasks.
Another open question is: To what extent does the VR view help
to better understand network patterns in comparison to a 3D
desktop view? Here, simulated time series with predefined net-
work patterns (ground truth) are helpful to evaluate and quantify
the benefit of the VR approach in a user study.

A basic shortcoming is the occurring visual clutter with in-
creasing number of displayed network nodes and the connec-
tion lines between origin and destination electrodes in 3D. As
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described, several filtering options have been implemented to
counteract this drawback and give the user the possibility to
apply a tvPDC threshold for visible connections (according to
time, frequency and tvPDC threshold) as well as a deliberate
selection of electrodes. Nevertheless, a main objective of future
work will be to find ways to reduce visual clutter in order to
display more edges simultaneously. This may for example include
utilizing transparency for low-valued parts of the edges as well as
edge-layouting techniques.

In conclusion, the user study indicates that the anatomical
arrangement in combination with the TPL provides an intuitive
view which turns out to be better understandable than the time-
frequency adjacency matrix representation. User feedback in-
dicates that this aspect in particular greatly benefits from the
immersive setting, as participants were easily able to understand
the graph spatially and could interact with it in a way that
felt natural to them. Most notably, this application allows the
exploration of the whole network with all involved modes at
once, instead of focusing on a hypotheses-driven preselection of
brain regions of interest, relevant time intervals or frequency
bands.
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