
© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Visual Analysis of Hyperproperties
for Understanding Model Checking Results

Tom Horak, Norine Coenen, Niklas Metzger, Christopher Hahn, Tamara Flemisch,
Julián Méndez, Dennis Dimov, Bernd Finkbeiner, and Raimund Dachselt

Fig. 1. HYPERVIS provides linked interactive views with highlighting mechanisms for analyzing counterexamples of hyperproperties.

Abstract— Model checkers provide algorithms for proving that a mathematical model of a system satisfies a given specification.
In case of a violation, a counterexample that shows the erroneous behavior is returned. Understanding these counterexamples is
challenging, especially for hyperproperty specifications, i.e., specifications that relate multiple executions of a system to each other.
We aim to facilitate the visual analysis of such counterexamples through our HYPERVIS tool, which provides interactive visualizations
of the given model, specification, and counterexample. Within an iterative and interdisciplinary design process, we developed
visualization solutions that can effectively communicate the core aspects of the model checking result. Specifically, we introduce
graphical representations of binary values for improving pattern recognition, color encoding for better indicating related aspects, visually
enhanced textual descriptions, as well as extensive cross-view highlighting mechanisms. Further, through an underlying causal
analysis of the counterexample, we are also able to identify values that contributed to the violation and use this knowledge for both
improved encoding and highlighting. Finally, the analyst can modify both the specification of the hyperproperty and the system directly
within HYPERVIS and initiate the model checking of the new version. In combination, these features notably support the analyst in
understanding the error leading to the counterexample as well as iterating the provided system and specification. We ran multiple case
studies with HYPERVIS and tested it with domain experts in qualitative feedback sessions. The participants’ positive feedback confirms
the considerable improvement over the manual, text-based status quo and the value of the tool for explaining hyperproperties.

Index Terms—Analyzing Counterexamples, Hyperproperties, Multiple Coordinate Views, Explainable Formal Methods.

1 INTRODUCTION

Model checking [23] is a highly efficient technique for the computer-
aided verification of computer systems such as integrated circuits, net-
work protocols, and software. Model checking has long made the
transition from research into practice and is routinely used by com-
panies like Intel, Microsoft, or Amazon. Intel, for example, replaced
testing with verification for the core execution cluster in their design of
the Intel Core i7 processor [46] and, recently, the initial boot code in
data centers at Amazon Web Services (AWS) has been model checked
to be memory safe [27]. The key advantage of model checking is that

• T. Horak, T. Flemisch, J. Méndez, and D. Dimov are with the Interactive
Media Lab at Technische Universität Dresden. Emails: horakt@acm.org,
tamara.flemisch@tu-dresden.de, dennis.dimov@tu-dresden.de,
julian jesus.mendez oconitrillo@mailbox.tu-dresden.de

• R. Dachselt is with the Interactive Media Lab, the Centre for Tactile Internet
(CeTI), and the Cluster of Excellence Physics of Life (PoL) at Technische
Universität Dresden. Email: dachselt@acm.org

• N. Coenen, N. Metzger, C. Hahn, and B. Finkbeiner are with the Reactive
Systems Group at CISPA Helmholtz Center for Information Security. Emails:
{norine.coenen, niklas.metzger, christopher.hahn, finkbeiner}@cispa.de

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

it is an automatic method: given a system description M and a logical
specification ϕ of a desired behavioral property, the model checker
automatically determines whether or not M satisfies ϕ . If the system
design is erroneous, the model checker generates a counterexample in
the form of a specific execution of M that violates ϕ . While finding
the counterexample is completely automatic, model checking typically
provides very little assistance in actually understanding the counterex-
ample and its underlying design flaw. Model checkers typically output
the counterexample in the form of a detailed listing that contains the
complete state information for every step of a computation that leads to
the violation. Understanding all this data is already difficult for small
designs and, for more complex systems and specifications, quickly
becomes a daunting task.

In this paper, we present a visualization system that aids the analyst
in understanding the counterexamples found by the model checker.
The visualization views communicate the core aspects of the model
checking result to the analyst and support an iterative analysis process.
We specifically focus on hyperproperties [51], a class of system specifi-
cations that is essential for the analysis of security-critical systems. Hy-
perproperties express the absence of undesired dependencies or flows
of information, such as those exploited in the infamous Meltdown [56]
and Spectre [48] attacks. A counterexample to a hyperproperty is a
set of executions of the system that, together, are problematic. For
example, if some software needs to keep certain data secret, then two
executions that result from different values of the secret (but agree

1

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

on the public inputs) should not show any difference on the public
outputs. Consequently, the model checker searches for such a pair of
executions that differ in their public output values. Our goal is to help
the analyst understand the violation of the hyperproperty by visualiz-
ing the relationship between the individual system executions, as well
as the relationship to the system description and the logical formula.
To support this, we have implemented the interactive tool HYPERVIS
(Fig. 1, imld.de/hypervis), that follows a multiple coordinated views
approach [21, 72]. We provide five interconnected views. The hyper-
property specification is shown as a logical formula in the formula view,
the system as a state machine in the graph view, the executions over
time in a tabular-like trace view and in a more compact timeline view.
Additionally, there is a textual explication in the explanation view.

The fundamental challenge is that the connections between the differ-
ent views and the relevance of their individual components is not known
in advance, but rather must be deduced specifically for the hyperprop-
erty of interest. We address this challenge with an automated causal
analysis of the counterexample, where we identify those elements of
the different views that directly contribute to the violation of the spec-
ification. The textual explication in the explanation view is directly
based on this analysis. In all other views, the relevant elements can be
directly highlighted. By incorporating easy-to-parse value encodings
and clear color mappings alongside interactive mechanisms such as
linked highlighting and debugger-like functionalities, we support the
analyst in recognizing the counterexample’s characteristics and in relat-
ing its different components. Finally, after the cause of the violation
is understood, the analyst can correct the system and the specification
directly within the interface through integrated editing functionalities.

HYPERVIS is the result of an interdisciplinary effort and a highly
iterative design process which included joint brainstormings and discus-
sions between visualization and model checking experts. The results
and insights from this joint effort are presented in this paper. Specif-
ically, we contribute: (1) an in-depth analysis of challenges, (2) the
design of visualization and interaction concepts enabling the visual
analysis of the model checking results, (3) the realization of these con-
cepts with HYPERVIS as a web-based tool alongside integrated editing
facilities, and (4) insights from applying multiple case studies to our
tool and conducting user feedback sessions with 6 participants. In
summary, our work contributes to a class of visualization solutions that
aims at visually explaining complex and abstract computing concepts.

2 WORKING WITH HYPERPROPERTIES

To support the analysis of counterexamples, we first need to understand
the involved components, current workflows, and prevalent challenges.
Therefore, we will first describe the formal objects utilized during the
model checking process on a toy information-flow control problem,
where a system needs to satisfy observational determinism (Sect. 2.1).
Then, we will detail the current workflow using a slightly bigger exam-
ple (Sect. 2.2), before outlining the resulting challenges for analyzing
counterexamples (2.3).

2.1 Example: Verifying Observational Determinism
In general, the considered objects include the system model M, the
counterexample executions π and π ′, and the hyperproperty specifica-
tion ϕ . In this simplified example, our model M (Fig. 2) is prone to leak
a secret s via the publicly observable outputs o1 and o2 to an attacker.
The underlying security lattice considers the secret s to be a confidential
input that should not be visible to any observer while the input i and
the outputs o1 and o2 are publicly observable. The model M can be
represented as a finite state machine, where the current state determines
the system’s output, and the transitions of the finite state machine are

initial
{}

state 1
{o1}

state 2
{o2}

¬i

i∧¬s

i∧ s

∗

∗

Fig. 2. A simple system leaking a secret s through the observable
outputs o1 and o2.

labelled with the inputs to the system. All inputs and outputs are binary
values, thus, they are either present or absent. When executing such a
system, the present inputs and outputs are observed over multiple time
steps. The given system in Fig. 2 cycles in the first state, outputting
nothing, until an input i is present. Depending on whether a secret s is
also given, the system then either outputs o2 or o1 indefinitely. If an
attacker now happens to observe two executions of the system where
the outputs are different although the input i were the same on both
executions, they can conclude about the secret s at this time step.

The specification ϕ that we would like to verify for the system M
is given as a HYPERLTL formula [24], a linear-time temporal logic
for hyperproperties that can relate multiple executions. For the ex-
ample above, we would like to require observational determinism,
which is formalized in HYPERLTL as follows: ∀π ∀π ′ (iπ ↔ iπ ′)→
(oπ ↔ oπ ′) . The formula quantifies universally (∀) over two traces

π and π ′. The temporal modality means “globally”, i.e., the formula
ϕ requires the subformula ϕ to hold at every point in time. The given

formula thus states that for all trace pairs π and π ′ it must hold that
when the observable inputs are the same at every point in time, the
respective observable outputs must also be equal. Given the model and
formula, a model checker would now provide two specific executions
where at a given time step the outputs differ while the inputs are equal.

2.2 Current Workflow
With the growing complexity of both the system and the specification,
the model checking of hyperproperties quickly becomes complicated.
We demonstrate the current workflow and the corresponding challenges
when invoking a model checker for hyperproperties on a more involved
example. To this end, we consider a system that arbitrates the access
of two processes to a shared resource. Both processes can request
access to their critical section (using req i) where they can interact with
the shared resource, and the arbiter grants the access (with grant i)
while ensuring mutual exclusion, i.e., only one of the processes can
enter its critical section at any given time. The arbiter guarantees that
every request will eventually be answered while not giving out spurious
grants, i.e., every grant will have been requested before. The finite state
machine for this system is sketched on the right in Fig. 3. We want to
check whether the arbiter is symmetric, thus, if a pair of traces π and
π ′ with symmetric requests at every step (i.e., (req 0π ↔ req 1π ′)
and vice versa) also gives the grants symmetrically. This hyperproperty
checks if any of the processes has an unfair advantage and is favoured
when granting access to the critical section. The corresponding HYPER-
LTL formula expressing symmetry is noted on the left in Fig. 3. The
system grants processes asymmetrically: If π = π ′ and both processes
request initially, then always process 0 is granted first (Fig. 4b).

The symmetry specification and the model of the arbiter can be
given to a HYPERLTL model checking tool, such as MCHYPER [31],
which are typically command-line based. The provided system models
are usually considered as hardware specifications that could be im-
plemented, e.g., on a chipset. Consequently, the model checkers also
consume low-level circuit representation like AIGER [9, 10], encoding
the system as an And-Inverter Graph. This representation is hard to read
for human developers, who often sketch the system by hand in a more
visual way (Fig. 3) and realize the models using hardware description
languages such as VERILOG [43], which are then compiled down to
AIGER. Given such a system description and a hyperproperty, the
model checker then tries to find a counterexample, i.e., a set of system

Fig. 3. Handwritten details of an arbiter system and a symmetry formula
checking if a process has an unfair advantage over the other process
when requesting access to a shared resource.

2

https://imld.de/hypervis

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Counterexample

I T

inputs state output inputs State output

O req O req 1 So 0 req O req 1 so

A 0 Ss So 0 s so

2 0 0 Sz Sn 0 0 Sz Sn

3 0 0 so 0 0 0 so

4 0 0 so 0 0 0 so 0

A B

Fig. 4. (a) Instance of a counterexample produced by MCHYPER (ex-
cerpt), here for the system and formula described in Fig. 3. (b) Handwrit-
ten notation of the provided output in a table-like format. The marked
outputs in the second row do not fulfil the requirements of the formula.

executions that together violate the HYPERLTL formula.
If a violation occurred, a counterexample is reported in a textual

representation where each line represents variable’s value on a given
trace at a given time step (Fig. 4a). This representation is hard to
grasp as even for smaller counterexamples, this output consists of a few
hundred lines (140 lines for this arbiter example), rendering it almost
impossible to quickly understand the violation. Consequently, system
designers might write down the values in a table-like representation
(Fig. 4b). Only then they can start to relate formula, system, and the
counterexample executions with each other in order to identify and
understand the violation of the specification.

2.3 Challenges
This whole process quickly becomes cumbersome and poses multiple
challenges. First of all, hyperproperties can express arbitrarily complex
relations across traces and time, making it hard to recognize the patterns
in the executions that violate such a hyperproperty. Further, analysts
need to identify which subformulas were relevant (i.e., violated) and
which parts can be ignored. Any visual support for scanning the present
executions and identifying the relevant elements will be highly ben-
eficial. After identifying the violation, it is still necessary to reason
about why the violation could occur, thus, why one execution reached
a particular state. For this, the executions must be considered in the
context of the provided system. Further, both formula and system can
grow quickly in size. On the one hand, this makes it increasingly chal-
lenging to sketch the components adequately and recognize specific
characteristics. On the other hand, the likelihood of faulty formula
specifications or system definitions increases as well, leading to the
need to identify these issues and to correct them. Thus, editing facil-
ities for formula and system are of interest. With our tool, we aim to
significantly improve these analysis workflows and help the system
designers in their development process.

3 BACKGROUND & RELATED WORK

We first provide formal details of the model checking problem of hyper-
properties. Secondly, we elaborate on the importance of visualization
methods to better understand abstract models or processes by giving an
overview of related work. Finally, we discuss existing work for editing
formula and graph representations.

3.1 Model Checking of Hyperproperties
Model checking [23] answers the following question: Given a system
description M and a specification ϕ , formally describing the desired
property, does M satisfy ϕ . More specifically in the context of hy-
perproperties, we require that the set of executions of M satisfies the
hyperproperty. For the interested reader, we will define these concepts
formally in the following.

The system description M is typically provided as a finite Moore
state machine, formally defined as a tuple (S,s0, I,O,τ, l) with: S: a
finite set of states; s0: the initial state; I: the input alphabet; O: the
output alphabet; τ : S× I→ S: a transition function; and l : S→ O: an
output labeling. Figure 2, for example, depicts a finite Moore state
machine with three states. The input alphabet contains variables i and s
and the output alphabet contains the variables o1 and o2. Edges of the
state machine (arrows) are labeled with the input and states (circles) are
labeled with the system’s output. An execution (trace) of a model M is
an infinite sequence of sets of atomic propositions AP through the state

machine, where AP = I∪O. An example trace of the model in Figure 2
is {i,s}({o2})ω . In the first position of the trace (corresponding to
the initial state and first input), there is no output but the input i and s.
Defined by the transition function, we proceed from the initial state to
state 2, where we reside indefinitely by outputting o2 without receiving
a further input. The notation (x)ω denotes that x is repeated infinitely
often. Formally, the set of all traces for a set of atomic propositions is
thus (2AP)ω , i.e., the set of above mentioned infinite sequences over
atomic propositions. The set of traces of a system model M, denoted
by Traces(M), is a subset of (2AP)ω .

Formally, a hyperproperty H is a set of sets of traces; meaning it
defines all trace sets that comply to the hyperproperty. If the traces
of a system model M are no element of the hyperproperty, i.e., if
Traces(M) 6∈ H then the system does not satisfy the hyperproperty. In
this case, a counter example is provided by the model checker, i.e., a
set of system traces that violates the hyperproperty.

The desired behavior of the system is provided in a formal specifica-
tion language such as HyperLTL, a temporal logic for hyperproperties.
In HyperLTL, variables are interpreted as atomic propositions which
can be connected with either Boolean operators (e.g., equivalence↔,
implies →, or ∨) or temporal operators. The most prominent tem-
poral operators are globally (ϕ , where ϕ must be true at all times)
and eventually (ϕ , meaning that ϕ will hold at some point in time);
further operators include until (U), release (R), and next (). As
an example, consider again the HYPERLTL formula from Sect. 2.1:
∀π ∀π ′ (iπ ↔ iπ ′)→ (oπ ↔ oπ ′). HyperLTL formulas start with
a quantifier prefix introducing universally (∀) or existentially (∃) quan-
tified trace variables (π and π ′) followed by a formula ψ in the body
(here (iπ ↔ iπ ′)→ (oπ ↔ oπ ′)). Within this formula, the variables
are indexed with trace variables to indicate to which trace quantifier
they refer to (e.g., iπ). For a formal definition of the semantics and more
examples of hyperlogics, we refer the interested reader to [24, 25].

With HYPERVIS, we visualize hyperproperty counterexamples re-
turned by a hyperproperty model checker [26, 30, 31]. We use MCHY-
PER [31], which builds on ABC [14]. MCHYPER takes as inputs a
hardware circuit, specified in the AIGER format [9, 10], and a HY-
PERLTL formula. MCHYPER solves the model checking problem
by computing the self-composition [5] of the system. If the system
violates the HYPERLTL formula, MCHYPER returns a counterexample.
This counterexample is a set of traces through the original system that
together violate the HYPERLTL formula. Depending on the type of
violation, this counterexample can then be used to debug the circuit or
refine the specification iteratively.

3.2 Visualization and Explication of Formal Methods
In recent years, research started more intensively to investigate how
complex and abstract algorithms and models can be visualized and
interactively explored, and, thus, be made more transparent. Most
prominently, this includes work within the area of explainable artificial
intelligence (XAI) [40,79,82], but can also be extended to related fields
such as formal methods [32]. For example, proof attempts have been
visualized by SATVIS [34] and an improved version of the Z3 Axiom
Profiler [74]. They visually represent attempts from the VAMPEXCIRE
theorem prover and Z3 SMT solver, respectively, in order to support
users and developers of the tools in understanding the results.

Textual Explications One instance of textual explications are auto-
matically generated facts based on the underlying data [81]. Typically,
machine learning algorithms extract facts which are then verbalized
using natural language generation (NLG) [57, 65, 80]. These facts can
then aid interpreting a visualization by verifying the viewer’s thoughts
and pointing at potentially overlooked aspects [81]. The generated facts
can be shown as a single caption for a chart [78] or be provided as a
collection of statements next to the visualization [28]. Applications in
the areas of student-teacher communication [60], XAI [42,77], and sup-
porting safe handovers in cyber-physical systems [84] further indicate
their practical benefits for interpreting visualizations.

Visualizing Counterexamples Visually representing counterex-
amples for trace properties, e.g., for LTL, is a known challenge for

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

which various approaches have already been proposed. Techniques,
such as state diagrams [3, 36, 45, 58], sequence diagrams [16, 55, 58],
and variable tables [45, 58, 68], convert the counterexample and the
system model to more readable formats. The model view [16, 36, 55]
takes a different route by mimicking the counterexample and providing
a step-wise navigation. Further, visualization approaches for such coun-
terexamples with single executions have been considered for various
domains and applications [11, 12, 44, 69]. Additionally, the established
model checker UPPAAL [55] visualizes timed automata for real-time
systems, allowing for interacting with simulations of the system.

Approaches for supporting the analysis of counterexamples include
minimizing [53] and explaining counterexamples [7], as well as inves-
tigating several system executions simultaneously [11, 39, 75]. Multi-
ple works explore how individual counterexamples can be visualized
and explained, e.g., for function block diagrams [44, 68], with the
newest version of MODCHK [68] being highly related to HYPERVIS.
MODCHK provides a causality analysis [7] which delivers an over-
approximation of a set of causes. In contrast, HYPERVIS produces
minimal explanations using a more efficient explanation algorithm.
Further approaches to identifying the causes of a trace property viola-
tion [39] have been made, for instance, the EXPLAIN [38] tool, which
has been incorporated into multiple model checkers [19, 20, 22].

Visualizing Parallel Executions Research on distributed systems
has examined how to visualize multiple, parallel executions of a system.
Two examples are ODDITY [63,87] and SHIVIS [2,8]. Oddity consists
of an interactive visual debugger and is part of the DSLABS framework,
which also includes a model checker for distributed systems. SHIVIS is
a web tool that uses space-time diagrams to visualize the execution of
a distributed system. Particularly these diagrams highlight the commu-
nication between components and the partial ordering between events
that happen across components (the happens-before relationship). How-
ever, while related investigations have been conducted, the specific
case of visualizing model checking results of hyperproperties was not
considered.

3.3 Editing Formulas and Systems
The modeling of systems that fulfill certain specifications is an iterative
process of checking, correcting, and refining both the specifications and
the system models. Therefore, editing the specification, i.e., formula
or system, are essential parts of the workflow. In the following, we
present existing work providing techniques for efficiently editing them.

Formula Editing Established online tools like Wolfram Alpha [86]
feature advanced text editors that facilitate writing mathematical no-
tations. Specifically for formula editing, most interfaces provide a
real-time preview of the formula, translated from the markup language
used for writing the mathematical expressions. The most common
markup languages for mathematical input are LATEX [37, 76] as well
as OpenMath and MathML [17, 50]. Via markup alternatives or spe-
cial characters keyboards, WYSIWYG approaches can allow users
without knowledge of the markup language to still write the desired
mathematical expressions [54, 71]. Such visual interfaces can also
support focusing on specific formula parts by collapsing selected sub-
formulas [18, 49]. Finally, more experimental interfaces are starting to
provide handwriting and speech recognition capabilities [29, 54, 85].

System Editing System models are usually edited in a hardware
description language like VERILOG [43] within an integrated develop-
ment environment. As an alternative to these textual representations,
the systems can also be modeled through finite state machines [1,61,70].
These models can then be visually edited, e.g., by adding, relocating
and removing nodes or edges from the node-link diagram [33, 73].
Lightweight versions of such editing are already provided within com-
mercial tools for general diagram editing, such as Stateflow [4].

4 HYPERVIS: VISUALIZING MODEL CHECKING RESULTS

Based on the identified challenges of analyzing model checking results
(Sect. 2.3), we iteratively developed HYPERVIS. In this section, we
will first recap the main components of the considered counterexamples
(Sect. 4.1) and outline our set design goals (Sect. 4.2). Then, as the

main part, we will present our visualization design (Sect. 4.3), including
its interaction concepts. This is followed by the description of the con-
sidered editing and debugging facilities (Sect. 4.4). Finally, we provide
further insights into the design process as well as the actual implemen-
tation (Sect. 4.5). The tool is provided online (imld.de/hypervis).

4.1 Components of Counterexamples
Strictly speaking, a counterexample to a hyperproperty is only the set of
executions that are returned by the model checking tool. However, for
the remainder of this work, we depict a counterexample to comprise the
formula and system provided by the analyst as well. Thus, it consists
of three main components: the system, the formula, as well as the
specific executions. In addition, we introduce explanations as a fourth
component, indicating and explicating relevant bits of the violation.

The system describes the hardware circuit as a transition system with
states providing the outputs and transitions implementing state changes
based on inputs. Due to the system being a hardware circuit, states are
internally represented by latches, i.e., sub-circuits that can preserve
information. Together, all available variables, i.e, outputs, inputs, and
latches, are the atomic propositions. The formula can be represented as
a syntax tree over propositional and temporal operators where leaves
are selected atomic propositions on a specified trace (or execution).
Here, a formula typically describes relations on pairs of executions, i.e.,
two instances of the system. Each execution is representing values of
atomic propositions for every time step. Notably, these executions can
be infinite and contain a lasso (or loop), which marks subsequent time
steps that are repeated infinitely.

Through a causal analysis of the counterexample, we are able to
identify which atomic propositions in the formula contributed to its
overall violation and are, therefore, relevant for the counterexample.
For the explanations, we extract textual explications of the most top
level subformulas with temporal operators. Depending on the actual
top level operator, these subformulas can either be satisfied or violated
(e.g., in case of an ‘implies’→ operator, the premise has to be satisfied
while the conclusion is then violated). For an analyst, all mentioned
components and elements are relevant for understanding the counterex-
ample in general, reasoning about why it can occur, and identifying
possible corrections to either the formula or system.

4.2 Design Goals
When starting the design process, we identified multiple design goals
that a tool for visually analyzing hyperproperty counterexamples should
fulfill. The goals DG1–DG5 describe desired visualization aspects,
while DG6–DG7 outline more general tool characteristics.

DG1: Build Upon Familiar Presentations. As illustrated in Fig. 3
and Fig. 4, analysts often sketch the system or list the executions
in a certain way. We aim to foster an intuitive understanding
of the views by building upon these typical representations, but
extending them with more effective encoding strategies.

DG2: Support Recognizing Trace Relations. In many cases, a spe-
cific combination of absent or present atomic propositions must
be identified and compared across the executions. We aim to
simplify such pattern recognition within the executions.

DG3: Relating Components. A major challenge for analysts is relat-
ing the different components to each other, e.g., mapping back
atomic propositions in the execution to corresponding subformu-
las or to taken transitions in the system. Thus, the tool should
support the analyst in mentally linking elements across views.

DG4: Provide Guidance for Identifying Violations. Counterexam-
ples can quickly become overwhelming, with a multitude of
variables or time steps being involved. Our goal is to support
analysts in identifying the relevant elements that led to the
violation and, thus, in understanding the model checking result.

DG5: Enable Editing of Formula and System. Due to their com-
plexity, formulas and systems can easily contain small but hard
to recognize bugs leading to a counterexample. For this, the tool
should provide integrated functionalities for fixing such issues.

4

https://imld.de/hypervis

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

B

A C

D E

Fig. 5. Views of HYPERVIS: (a) formula view, here with hover of a subformula; (b) graph view showing the system as a Moore transition system, here
zoomed in; (c) trace view providing for both executions π and π ′ the values of all atomic propositions across all time steps; (d) timeline view showing
the executions in a compact format; and (e) explanation view with textual statements on the counterexample, here with one relevant subformula.

DG6: Provide a Holistic Interface. Model checking of hyperproper-
ties is a multi-step process; from providing the input, to analyzing
the counterexample, to iterating the specification or system. Thus,
a tool should consolidate these steps within one interface.

DG7: Avoid Setup Efforts. The tools used for model checking are
often command-line based and implemented with different depen-
dencies. We aim at avoiding the setup effort for the analyst and
providing a unifying ready-to-use tool.

In the following, we detail how we addressed these design goals within
the visualization design of HYPERVIS’ views.

4.3 Visualization Design
Guided by the described design goals, we developed HYPERVIS and
its general interface including five visualization views. The focus in
this section lies on how we visualize the counterexample components
specifically as well as efficiently guide the analysis.

4.3.1 Visualizing a Counterexample: Provided Views
For HYPERVIS, we developed five different views; the formula view,
graph view, trace view, timeline view, and explanation view. In the
following, their design is detailed.

Formula View The HYPERLTL formula provided by the user is
transformed into a representation using the actual logical and temporal
operator symbols (DG1). Internally, the formula is in a hierarchical
structure; this structure is indicated with bars below the formula string.
The bars allow emphasizing the different subformula levels, with the
uppermost bars representing the atomic propositions and the lowermost
bar (marked in blue) the entire formula. Hovering over the bars empha-
sizes the corresponding subformula (Fig. 5a), simplifying recognizing
the formula structure and corresponding bracket. The stated atomic
propositions always relate to one specific trace. To simplify distinguish-
ing which proposition corresponds to which trace, we introduced fixed
colors for the traces and added labels to the proposition, i.e., either @π

or @π ′. These trace colors are re-used in all views.

Graph View The system is visualized as a Moore transition sys-
tem, i.e., a graph with the states as nodes and transitions as edges
(Fig. 5b). Following their convention, the set of present outputs on a
given state is printed into the node label, e.g., {emergency} in state S3.
If an output is absent, its value is false. Further, we show symbolic
transitions, i.e., edges can be labeled with formulas expressing specific
input combinations, such as logical conjunction (e.g., up∧¬bound).
The graph can be freely zoomed and panned.

Trace View As previously described, analysts typically transform
the textual output of the model checker into a table-like format, thus
creating an overview of all atomic propositions and their values on the
traces across time steps. Our trace view builds upon that (DG1) and
prints the atomic propositions per trace as columns and the time steps
as rows (Fig. 5c). The values themselves are binary, thus are either true
when a variable was present or false when it was absent. We propose to
replace the common notation of the values as 1 and 0 with a graphical

representation: a filled rectangle represents present variables and
a hollow rectangle absent variables. This representation simplifies
recognizing patterns of occurring values in and across traces (DG2).

Small icons before the proposition name indicate its type, i.e., either
output, input, or latch. The propositions are sorted first by type

and then alphabetically. Controls in the view head allow for hiding an
proposition type. In addition to the atomic propositions, we also show
a numbered state indicator (e.g., S3) in the first column of each trace.
These state indicators are abstractions of the latches, which together
encode the current state. The time steps are labeled as T0, T1, and so
forth. Further, if a lasso (see Sect. 4.1) is present in the counterexample,
it is indicated with gray borders at the respective time steps.

Timeline View So far, the view design was influenced by common
ways to write down the counterexample. However, the timeline view is
a new visualization that aims to provide a more compact representation
of the executions (Fig. 5d). Similarly to the trace view, it shows the
specific values of the atomic propositions, but with the time mapped
horizontally. By omitting the atomic proposition labels, the rectangles
indicating present or absent variables are placed next to each other.
This allows for a further improved pattern recognition, either across
traces or across time steps (DG2). For example, considering a set of
four variables, it is easily possible to observe differences or similarities
across instances: and differ only in the second variable.
The label of the represented proposition can be accessed by hovering
over the rectangle; their order is equal to the order in the trace view.

In an earlier iteration, the view was intended to emphasize diverging
behaviors of the executions for one variable, e.g., showing when they
were in different states or read different values for an atomic propo-
sition. We opted to develop the view further into its more compact
format while also showing the atomic propositions. To still indicate
diverging executions, the state indicator (e.g., S0) is colored black if
both executions are in the same state and colored according to the trace
color when they diverge (e.g., S2 and S1). Finally, in the case of a
present lasso, an indicator at the time steps is provided.

Explanation View The explanation view shows a verbal summary
of the counterexample alongside statements on the most top-level sub-
formulas relevant to the found violation (Fig. 5e). The basis of this is
an automated causal analysis of the counterexample, which extracts
a minimal set of subformulas that contributed to the overall violation
at one or more time steps. With this information, we can relate the
subformulas to specific values at specific time steps and derive a textual
statement. The statements’ structure is always the same: first, the tem-
poral operator of the subformula is stated, followed by a list of involved
atomic propositions. For each proposition, it is indicated at which time
step it became relevant, how the values relate to each other across traces
and whether the values were always true or false. This information
is provided as inline or word-sized representations [6, 35], seamlessly
integrating into the textual description. Further, each statement is as-
signed a unique color, allowing for indicating it in other views (DG3).
For example, as visible in Fig. 5d, the timeline view shows bars at the
bottom, hinting at which time steps a subformula was relevant.

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

BA

Fig. 6. The interactive analysis of counterexamples is at the core of HYPERVIS: (a) activated explanation highlighting points analysts to relevant
elements; (b) stepping through time steps fosters the understanding of the executions’ behavior (controlled by the buttons in the top right corner).

A complete statement is shown in Fig. 5e. For bound the value was
true () and equivalent on both traces (π=π ′) at T2, while emergency
was unequal on both traces (π 6=π ′) at T3. These statements can help
analysts to quickly grasp the essential aspects of the violation and
locate the time steps and atomic propositions of interest. Currently,
the provided explanations for the atomic propositions can indicate
found equivalences of traces across n time steps as well as consistent
values across time steps (DG2). However, as HYPERLTL formulas can
describe arbitrary relations of atomic propositions across traces, not all
relevant patterns are currently recognized and expressed. Similarly, we
only provide statements for subformulas being present at the top two
levels; thus, more nested formulas might not be verbalized adequately.

Interface Arrangement By default, the views are arranged in
a simple 2-column grid, with formula, explanation, and trace view
being placed in a wider column on the left, and timeline and graph
view on the right (Fig. 1). However, as the space requirement of the
views can heavily vary between counterexamples, the interface also
supports arranging the views differently. For example, if a formula is
becoming rather long, it is placed in full width on top. Similarly, if
counterexamples involve many time steps, trace view and timeline view
are devoted more space. In general, the goal is to provide all views
within the initial viewport and avoid scrolling as much as possible.
Finally, analysts can also manually collapse or maximize views.

4.3.2 Analyzing a Counterexample: Interactive Guidance
For analyzing the counterexample, we provide further interactive mech-
anisms fostering the comprehension of the counterexample’s specifics.
These mechanisms include an explicit highlighting of relevant ele-
ments, linked highlighting across views, as well as a debugger-like
stepping through the counterexample. These dynamic functionalities of
HYPERVIS are also shown and explained in the accompanying video.

Highlighting Relevant Elements As stated in the context of the
explanation view, we are identifying the subformulas that contributed
to the overall violation at specific time steps. This knowledge is not
only used for the explanation statements but also to indicate the rele-
vant elements across all views (DG4). To activate this indication, the
explanation view features a ‘Highlight’ toggle button (Fig. 5e). Upon
activation, as in Fig. 6a and Fig. 1, the non-relevant subformulas in the
formula view are grayed out, as are the non-taken states and transitions
of the executions in the graph view. Similarly, non-relevant values in
the trace view and timeline view are shown less opaque while relevant
values are emphasized. Further, a filter button next to the highlight
button allows for removing non-relevant elements from the views.

We also relate the relevant elements to the provided statements in
the explanation view (DG3). Specifically, we identify which atomic
proposition is part of which statement, i.e., in which subformula it
occurs. Further, we propose to use the statements’ assigned color
for highlighting: the rectangle representing binary values are colored
accordingly, as are the bars indicating the atomic proposition.

Linked Highlighting In general, all views react to hovering over
displayed elements, e.g., subformulas, states, or time steps. Hovering

also results in a linked highlighting across views [15, 72], i.e., the cor-
responding elements in other views are also highlighted (DG3). Only
in a few cases, elements are shown in exactly the same way in other
views. For example, subformulas in the formula view may occur again
the explanation view. As in most cases elements appear slightly differ-
ently, e.g, formula view and timeline view show atomic propositions
differently, the correspondence is not immediately apparent and is then
indicated through the linked highlighting (DG3).

Specifically, hovering over a trace indicator (i.e., π or π ′) in either
view highlights the execution in the graph view, i.e., all taken transitions
and states are colored in the trace color. Vice versa, hovering a state
or transition highlights instances in the executions where this state and
the inputs of the transition were present. Hovering over a time step
highlights the corresponding row or column in trace and timeline view,
the relevant subformulas at this time step, and the executions’ current
states and transitions taken next. The atomic propositions in formula
and explanation view allow for highlighting the corresponding labels in
the trace view and, if applicable, the specific values that were relevant
at certain time steps in both trace and timeline view (DG4).

Stepping through a Counterexample It is important to under-
stand the sequence of events that lead to the violation. Therefore, we
enable stepping through the counterexample in a debugger-like fashion
(Fig. 6b). Through control buttons provided in the interface header,
the analyst can move forward and backward. For the current step, a
stronger visual highlight is used (Fig. 6b), with the time step colored in
blue and relevant subformulas further emphasized. For the graph view,
we color the states and transitions in the respective trace colors; if they
share the same state or transition, blue is used. The same effect can
also be achieved by selecting a time step in the trace view or timeline
view. Further, when stepping through, the highlight is permanent and
can be used in combination with the highlighting of relevant elements
as well as the linked highlighting triggered on hover.

4.4 Tool Functionalities & Editing Facilities

Following DG6, we provide one unified interface that allows for per-
forming model checking, analyzing the counterexamples, and iterating
specification and system within it. In the following, we describe the
tool functionalities of HYPERVIS as well as its editing facilities.

Tool Functionalities We extended HYPERVIS with tool functional-
ities allowing for using it in a productive way for many model checking
projects simultaneously. Among others, this includes functionalities for
(re-)loading projects, re-running model checks, or managing different
versions of them. The project manager provides access to all model
checking projects, i.e., loaded systems and specifications checked, in
a sidebar widget. The different projects can have multiple versions
(here, marked with the latest modification timestamp), helping analysts
to quickly jump to older iterations. For each version, multiple checks
can be created, i.e., multiple hyperproperties that a system should ful-
fill. The versions of the projects can be manually created, but are also
automatically introduced when editing a formula or system. In case
of faulty edits that result in an error thrown by the model checker, a

6

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Fig. 7. Within the formula view, the formula editor can be toggled,
providing a WYSIWYG inline LATEX editor.

rollback to the previous version is offered. Each version of the project
can be freely tagged and each checked hyperproperty can be named.

Editing of the Specification HYPERVIS provides a formula ed-
itor that uses LATEX markup to edit the hyperproperty specifications
(Fig. 7). Specifically, the analyst can directly type LATEX markup, which
is automatically rendered inline. By using LATEX, copying and pasting
formulas edited in common tools outside of HYPERVIS becomes di-
rectly possible. Similarly, formulas could also be sketched by hand via
pen input. However, this is currently only supported by external tools
like MYSCRIPT [64]. Our editor also features an extended keyboard,
providing access to the common logical and temporal operators. As
mentioned before, HYPERVIS supports the editing of multiple separate
formulas for a single system, potentially allowing to split up complex
hyperproperties or to test very different specifications.

Editing of the System For editing the system model, changes
can be made either through visual editing or by changing the original
text input. The visual editing could involve providing a special mode
allowing for, e.g., drawing edges, rerouting existing ones, or creating
nodes. At the same time, some users might still prefer to directly
textually edit the originally provided VERILOG definition. However, as
providing such editing supporting is not straightforward, HYPERVIS
currently only features a mock-up editing of the system. Specifically,
the challenge comes with the representation of the system as a hardware
circuit in the AIGER format [10]. These AIGER files are automatically
generated from definitions implemented in VERILOG and are hardly
readable by humans. For displaying the graph view, a DOT [52]
representation is generated from AIGER, however, the transformation
comes with information loss and is therefore not invertible. To sidestep
this, an intermediate format for automatons could be used, which can be
transformed from or to AIGER without information loss and also more
easily changed in programmatic way. For now, we allow the editing of
the DOT notation, which updates the shown graph view to illustrate the
intended functionality but cannot trigger an updated model check.

4.5 Design Process & Implementation
In order to develop HYPERVIS, we followed an iterative design process
within an interdisciplinary team. This team consists of formal methods
researchers on the one hand and HCI as well as visualization researchers
on the other hand. While not end-users, the first group are domain
experts for model checking of hyperproperties, knowing the challenges
and main goals. In the following, we detail the design phases as well
as the current implementation of HYPERVIS.

4.5.1 Design Phases

The first phase involved introducing the visualization researchers to the
domain of model checking and hyperproperties in order to establish a
common understanding of the current processes and present challenges.
Afterward, we jointly developed a first click prototype illustrating a
possible interface visualizing the found counterexamples. Then, the first
implementations of the visualizations were realized in a web prototype
alongside a parser consuming the output file of the model checking
generated by MCHYPER. Within this process, it became apparent
that plainly representing the counterexample will be insufficient and
that it will be essential to become able to extract the relevant bits of
the violation and presenting it to the analyst. At this stage, a first
version of the causal analysis algorithm was developed alongside early
highlighting mechanisms. This enabled testing various case studies, and
thus incorporating further improvements into the visualization design.

On the tool side, we started to develop approaches for editing the
formula and system as well as the general structure of the tool interface,
e.g., providing access to the project list, their versions, or loading new
ones. With these tool aspects implemented, we ran a first feedback
session with 3 participants and collected comments on the interface.
This feedback allowed us to iterate, e.g., the menu structures, button
icons and labels, or features of the inline formula editor. The result of
the overall design process is the current version of HYPERVIS.

4.5.2 Implementation as Web Tool
HYPERVIS is implemented as a web-based tool, featuring a NODE.JS-
based [67] backend and JavaScript-based frontend. In the frontend,
the views are implemented with plain HTML or SVG. Except for the
explanation view, the rendering of all views is controlled by D3.JS [13].
To support the linked highlighting, custom events were introduced that
are sent and consumed by the views. For the formula editing, we incor-
porate the MATHQUILL library [76]. For translating the formula and
producing the polish notation that MCHYPER requires, we use SPOT.
Graph editing is not fully functionally implemented yet. To illustrate
the general possibility, we provide an embedded CODEMIRROR [41]
editor to change the DOT representation of the system.

The backend is responsible for managing the model checking
pipeline. Based on the analyst’s inputs, it calls the MCHYPER Python
tool before handing over the found counterexample to our own Python
script extracting the relevant subformulas. It computes a minimal set of
variable and time step pairs, which cause the violation. In addition, this
script also writes all required information into a JSON file. In parallel, a
separate script is used to generate the DOT representation based on the
AIGER file. As for larger systems this generation might not terminate
in a reasonable time, for some counterexamples the graph is not avail-
able. After parsing these generated outputs in the NODE.JS server, the
data is provided to the frontend. For each project, the results are stored
in a folder structure, allowing to quickly reload the counterexamples
later on and implement the versioning concept. The communication
between the frontend and backend is based on HTTP requests.

The HYPERVIS tool is hosted online but can also be locally run,
either as a Docker container or by fully installing it and all its dependen-
cies. In general, we envision the usage as an online tool as the primary
usage style, which then also allows for avoiding setup efforts (DG7).

5 VALIDATING HYPERVIS

In this section, we validate HYPERVIS by discussing multiple case
studies and reporting on user feedback sessions. Both illustrate that HY-
PERVIS indeed advances the state-of-the-art significantly by helping to
quickly identify the violations in counterexamples of hyperproperties.

5.1 Case Studies
Here, we detail two selected case studies: In the first one, we visualize
the results of model checking information-flow properties on an open
source implementation of the I2C bus protocol. In the second case
study, we take a look at one of the core building blocks of such bus
implementations: mutual exclusion protocols.

CS1: I2C Bus Protocol The I2C bus protocol coordinates the
communication between multiple components in a master-slave hier-
archy and is widely used in practice. As it has no security features,
this has led to exploits, for example, in smart cards of German public
health insurance companies [83]. The implementation used in this case
study is taken from OpenCores [66]. Its AIGER circuit consists of
254 latches plus 86 input and output variables. Typically, this protocol
consists of a master, one controller, and several slaves, where the master
communicates to the slaves while the controller ensures properties like
mutual exclusion. Suppose information has to be sent over the bus,
the master addresses the slaves with a designated address bit. In this
case study, we visualized the result of model checking the following
information-flow policy: The information which slave the master is ad-
dressing should not be identifiable from the bus’ output. This property
is violated, but the counterexample is highly complex (e.g., it is not
possible to generate a state graph). Still, the visualizations provided by
HYPERVIS help to understand the violation.

7

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

BA

Fig. 8. (a) Excerpt of the interface for the I2C case study with activated explanation highlighting, where the trace view can only show a fraction of the
680 columns (see scroll bar); (b) with the explanation filtering activated as well as latches and inputs disabled, the trace view can be limited to the
one relevant output variable. In both views, the explanation view has been collapsed; the full view is provided in the supplement.

The analyst benefits especially from the highlighting and filtering
functionalities. The trace view of HYPERVIS is shown in Fig. 8. Fig. 8a
shows parts of the interface with highlighting activated. While this
already helps to see relevant elements, it is still nearly impossible to
grasp the violation as large parts are outside of the browser’s viewport.
By enabling the filtering and hiding variable types currently not of
interest, see Fig. 8b, HYPERVIS can yield the proposition and the time
step responsible for the violation and support the user in limiting the
information to a reasonable amount. Then, we can see that one output
diverged at time step T6, resulting in a counterexample.

CS2: Symmetric Mutual Exclusion Arbiters form the basic
building blocks in many protocols, such as the AMBA protocol or the
above-mentioned I2C protocol. Ensuring that no process or slave has
an unfair advantage is highly desirable, also referred to as symmetry
in protocols. In this case study, we visualize the results of checking
if an arbiter implementation satisfies symmetry (cf. the arbiter system
from Sect. 2.2). Specifically, we check whether for two executions with
symmetrically arriving requests the grants are also given symmetrically.

This case study features the interplay between the views imple-
mented in HYPERVIS. The explanation view directly tells the analyst
why the overall formula is violated. When the highlighting button
is pressed, HYPERVIS pinpoints the atomic propositions, time steps,
and subformulas that caused the violation in the trace view, the time-
line view, and the formula view (Fig. 1). In the formula view, for
example, the subformula grant 0@π ↔ grant 1@π ′ is highlighted in
the conclusion because only this subformula is needed to understand
why the symmetry specification is violated: In the counterexample,
grant 0@π holds at time step 1 while grant 1@π ′ does not hold at
that time step. Highlighting relevant subformulas decreases the number
of subformulas that the analyst needs to consider when trying to under-
stand the counterexample. This illustrates that HYPERVIS fulfills DG4,
providing guidance for understanding the formula violation.

After the violation is identified, the bug in the system needs to
be found. Since DG3 is supported through the linked highlighting
of elements and the highlight button, the graph view is restricted to
the relevant states for the counterexample executions. This feature
again allows the analyst to focus their attention on the most relevant
aspects. By using HYPERVIS to explicitly step through the time steps,
one observes that both executions represent the same system trace,
thereby violating the symmetry in the grants. The solution to achieve
symmetry is: Adding a new input to the system that allows giving grants
symmetrically when both processes send requests simultaneously [59].

5.2 User Feedback Sessions

We conducted feedback sessions with domain users to better assess the
merit of our tool for them. In the following, we first describe the study
design before reporting on the received feedback.

5.2.1 Study Design
Participants We recruited six participants (age M=27.5 yrs,

SD=3.33 yrs; 1 female, 5 male) that have significant knowledge on
model checking and hyperproperties. On average, participants rated
their theoretical expertise on model checking with 4.5 out 5 and on
hyperproperties with 4.0.

Apparatus The sessions were conducted remotely through a video
call with screen sharing. We hosted the latest version of the tool online
and provided participants with the link. Two investigators moderated
the videotaped sessions, and a third one was taking notes. Participants
were asked to follow a think-aloud protocol, i.e., verbally phrasing their
thoughts and actions while interacting with the tool.

Procedure After a short welcome and general introduction, par-
ticipants were asked to provide consent for the video recording. Then,
we outlined the procedure and think-aloud protocol before starting the
demonstration of HYPERVIS via screen sharing, introducing all views
and their functionalities. Afterward, participants were asked to open
the tool, start screen sharing from their end, and analyze three provided
examples (detailed below). For each example, we provided a short
introduction on the specification and system and then asked them to
reason about the counterexample. Further, for the first example, partic-
ipants had to propose a fix for a corrupt system, while in the second,
they had to edit the formula to a working version. For the last example,
they had to identify the “needle in the haystack”. After working on
each example, we asked them to reflect on the interface and which
views they found helpful in the specific context. Lastly, we concluded
the session with an open discussion and provided them with a link to
our questionnaire. Sessions lasted one hour on average.

Provided Examples For the demonstration of HYPERVIS, we
used an arbiter example similar to the one described in CS2. Further,
we prepared three examples for the hands-on part: The first two consider
a straightforward drone system that is supposed to increase the drone’s
height when it reads an up input, and to go into an emergency state
when a bound input is read. In the first version, the specification stated
that equal bound inputs must result in equal emergency outputs in
the next time step; however, the specification was violated due to an
incorrect transition in the system. Participants had to identify this issue
and verbally provide a fix. The counterexample is visible in Fig. 5 and
Fig. 6b. In the second version, the fixed system was used, but now with
a different but incorrect formula. Participants had to pinpoint this issue
and, this time, edit the formula in HYPERVIS. The counterexample is
shown in Fig. 6a. Lastly, the third example was a larger counterexample
involving 29 time steps and 50 atomic propositions, where a mutual
exclusion specification was violated. Due to the system’s size, the
graph view was not available. We asked participants to describe the
violation in their own words and did not inquire any fixes.

8

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

5.2.2 Results
Overall, all participants (P1–P6) were able to work with HYPERVIS
without larger issues and considered the tool to be useful for experts and
novices. Our two main insights are: 1) Our proposed interface allows
to quickly identify the violations in counterexamples and provides
valuable guidance for understanding the underlying issue. 2) Personal
preferences and the different analysis workflows influence how the
different views were used by the participants.

All participants were able to correctly identify the violations and is-
sues in the provided examples within the given time. We could observe
that the trace view was used as a central component within the analysis
process, providing detailed information on the executions, while the
linked highlighting allowed for seeing the corresponding information
in the other views. For the formula view, all participants (P1–P6) ex-
plicitly stated that they are intrigued by the hierarchy indicators below
the formula. Similarly, the graph view proved to be of great value,
particularly when the traces were highlighted while stepping through
the counterexample. The comments and ratings also showed that the
used colors for traces and statements were appreciated for relating the
different components. Finally, the explanation highlighting was consid-
ered “extremely important” (P3) for understanding the counterexample
and identifying the relevant pieces for the violation (all Ps).

At the same time, not all views were used to the same extent. For ex-
ample, while most participants (P2–P6) found the textual explanations
“extremely good” (P6) and used it as starting point for understanding the
violation, participant P1 preferred working with the other views. Simi-
larly, while participants P2+P5 only briefly used the stepping through
mechanisms, the others found it very helpful and used it extensively.
The timeline view was intensively utilized by participants P2 and P4–P6,
particularly for comparing traces and recognizing specific patterns. At
the same time, P1 used the trace view more extensively, while P3 used
the timeline view only for the larger example.

While working with HYPERVIS, participants also provided multiple
suggestions for various improvements. One commonly stated shortcom-
ing was the missing graph view for more extensive examples. Further,
P5+6 would prefer some indication of the explanation statements in
the graph view as well. As participant P4 intensively used the stepping
through functionalities, he proposed to improve the coloring of nodes
and edges in the graph view when both executions are overlapping. Par-
ticipants P4+6 suggested activating the explanation highlight on default.
Some extended filter options were also proposed, e.g., P5 suggested the
filtering of single atomic propositions, while P2 proposed to allow for
hiding time steps. For the formula editing, multiple possible improve-
ments were stated, e.g., better highlighting of corresponding brackets
(P5+P6), a semantic check (P4+P5), or separating the LATEX input and
rendered formula (P2). Still, the formula editor was appreciated, with
P4 stating that it is “something that we needed for a long time”.

6 DISCUSSION

The positive feedback that we received emphasizes that there is a clear
need for visualization and analysis interfaces within the formal meth-
ods domain. We found that the most important aspect when working
on visualization solutions within this space is to have access to the
specific knowledge that is involved in the rather abstract and formalized
concepts. From a visualization perspective, the incorporated encod-
ing strategies or interactive mechanisms are mostly already known.
However, when applied and combined in the right way, they become
extremely helpful. Importantly, as it was also commented in our study,
such a solution is not only an improvement for domain experts, but can
also support novices in understanding the underlying principles.

Consequently, our work is in line with other efforts of provid-
ing explications and intuition for abstract or black-box-like pro-
cesses [32, 82, 84]. However, in this area, work around explainable
AI [40] has received most attention in recent years, while formal meth-
ods themselves are only rarely considered. This is particularly interest-
ing for two reasons: (1) formal methods, and especially model checking,
are largely built around mathematical and logical representations that
are consumed in command-line tools, while visual representations re-
main underestimated. Therefore, there is a big potential for making the

concepts more accessible by using visualizations. Further, the math-
ematical nature of it requires a rigorous treatment of the visualized
elements, which poses special challenges to the visualization design.
(2) Formal methods also play an important role for AI in general and
when trying to provide explanations to computations of an AI agent.
For example, Marabou [47] is a recently introduced framework for
verifying and providing counterexamples of properties of deep neural
networks (e.g., robustness, which is in general a hyperproperty). How-
ever, as it is command-line based and does not provide an explanation
on the counterexample, users have to cope with the same problems de-
scribed in this work. The here presented visualization approaches might
be directly applicable to many tools in the area of formal methods.

In the light of these considerations, HYPERVIS can be seen as a first
foundation for explaining hyperproperties and counterexamples. As
the immediate next steps, the suggested improvements from the user
feedback sessions can be incorporated. For the editing facilities, this
includes the general possibility for modifying the system plus a visual
editing mode. This could also allow for providing a stand-alone editing
mode with improved live previews of formula and system. For the
analysis of counterexamples themselves, an interesting addition would
be support for adding annotations or storing derived insights [62]. In
this context, it can also be considered to automatically track the analysis
history or provenance [88] and allow analysts to review it.

Currently, HYPERVIS is focused on visualizing a specific counterex-
ample to a hyperproperty. However, on the one hand, the need for
visually representing hyperproperties can also occur independently
from violated specifications, i.e., for correctly implemented systems
and specified properties. While it is always possible to generate a
so-called witness for a proved hyperproperty by negating the specifi-
cation, the found witness is one of many possible ones and might not
adequately represent the underlying hyperproperty. On the other hand,
the challenging but promising interactive synthesis problem potentially
benefits from the presented visualizations. Synthesis constructs per
definition a correct implementation directly from the provided spec-
ification, making the model checking process superfluous. Here, it
would be beneficial to visualize the iterative synthesis process (i.e., how
the system was derived) as well as the proposed implementation itself.
The visualization and interaction designs presented here can guide the
development of such novel hyperproperty visualization tools.

7 CONCLUSION

In this paper, we presented concepts for visually analyzing counterex-
amples to hyperproperties as well as for editing the provided formula
and system. As demonstrated through case studies and attested by user
feedback, our HYPERVIS tool notably improves the analysis and un-
derstanding of the counterexamples. At the core of this is the targeted
usage of encoding strategies and interactive mechanisms that pointedly
represent the different aspects and help to guide the analyst to the rele-
vant information in the example. In particular, the right combination of
allegedly simple measures, such as color encoding, linked highlighting,
and relevance indication, can allow experts to quickly recognize the
violation cause and also novices to understand the complex relations in
the first place. Notably, the key to such solutions is the understanding of
the domain, which in this case enabled us to embed the causal analysis
of the counterexample and to automatically derive textual explanations
and corresponding highlights. The provided editing facilities support
fixing the identified issues, turning HYPERVIS into a valuable tool for
analyzing hyperproperties. With this, we contribute a foundation for ex-
plaining and visualizing hyperproperties in general and hope to inspire
further visualization solutions for more formal methods concepts.

ACKNOWLEDGMENTS

We thank Weizhou Luo for his valuable support during the overall
project duration. This work was funded by DFG grant 389792660
as part of TRR 248 – CPEC, by the DFG as part of the Germany’s
Excellence Strategy EXC 2050/1 - Project ID 390696704 - Cluster of
Excellence “Centre for Tactile Internet” (CeTI) of TU Dresden, by the
European Research Council (ERC) Grant OSARES (No. 683300), and
by the German Israeli Foundation (GIF) Grant No. I-1513-407./2019.

9

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://perspicuous-computing.science

REFERENCES

[1] A. T. Abdel-Hamid, M. Zaki, and S. Tahar. A tool converting finite state
machine to vhdl. In Canadian Conference on Electrical and Computer
Engineering 2004, pp. 1907–1910, 2004. doi: 10.1109/CCECE.2004.1347584

[2] J. Abrahamson, I. Beschastnikh, Y. Brun, and M. D. Ernst. Shedding
light on distributed system executions. In Companion Proc. International
Conference on Software Engineering, pp. 598–599. ACM, New York, NY,
USA, 2014. doi: 10.1145/2591062.2591134

[3] H. Aljazzar and S. Leue. Debugging of dependability models using
interactive visualization of counterexamples. In International Conference
on Quantitative Evaluation of Systems, pp. 189–198. IEEE, Piscataway,
NJ, USA, 2008. doi: 10.1109/qest.2008.40

[4] A. Angermann, M. Beuschel, M. Rau, and U. Wohlfarth. MATLAB –
Simulink – Stateflow. De Gruyter Oldenbourg, 2020. doi: doi:10.1515/
9783110636420

[5] G. Barthe, P. R. D'Argenio, and T. Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–
1252, Oct. 2011. doi: 10.1017/s0960129511000193

[6] F. Beck and D. Weiskopf. Word-sized graphics for scientific texts. IEEE
Trans. Visualization and Computer Graphics, 23(6):1576–1587, June 2017.
doi: 10.1109/tvcg.2017.2674958

[7] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler. Explaining
counterexamples using causality. In Computer Aided Verification, pp. 94–
108. Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-02658-4 11

[8] I. Beschastnikh, P. Liu, A. Xing, P. Wang, Y. Brun, and M. D. Ernst.
Visualizing distributed system executions. ACM Transactions on Software
Engineering and Methodology, 29(2):9:1–9:38, Apr. 2020. doi: 10.1145/
3375633

[9] A. Biere. The AIGER And-Inverter Graph (AIG) format version 20071012.
Technical Report Report 07/1, Institute for Formal Models and Verification,
Johannes Kepler University, Linz, Austria, 2007.

[10] A. Biere, K. Heljanko, and S. Wieringa. Aiger 1.9 and beyond. Technical
report, Institute for Formal Models and Verification, Johannes Kepler
University, Linz, Austria, 2011.

[11] T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels. Paths to property
violation: A structural approach for analyzing counter-examples. In IEEE
International Symposium on High Assurance Systems Engineering, pp.
74–83. IEEE, Piscataway, NJ, USA, 2010. doi: 10.1109/hase.2010.15

[12] M. L. Bolton and E. J. Bass. Using task analytic models to visualize
model checker counterexamples. In Intl. Conference on Systems, Man and
Cybernetics, pp. 2069–2074. IEEE, 2010. doi: 10.1109/icsmc.2010.5641711

[13] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.
IEEE Trans. Visualization and Computer Graphics, 17(12):2301–2309,
Dec. 2011. doi: 10.1109/TVCG.2011.185

[14] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength
verification tool. In Computer Aided Verification, pp. 24–40. Springer
Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-14295-6 5

[15] A. Buja, J. McDonald, J. Michalak, and W. Stuetzle. Interactive data visual-
ization using focusing and linking. In Proc. Visualization '91, pp. 156–163.
IEEE, Piscataway, NJ, USA, 1991. doi: 10.1109/visual.1991.175794

[16] A. Campetelli, F. Hölzl, and P. Neubeck. User-friendly model checking
integration in model-based development. In International Conference on
Computer Applications in Industry and Engineering, 2011.

[17] D. Carlisle, P. D. F. Ion, and R. R. Miner. Mathematical Markup Language
(MathML) Version 3.0 2nd Edition. W3C, 2014.

[18] D. Cervone, P. Krautzberger, and V. Sorge. Towards meaningful visual
abstraction of mathematical notation. Proc. CICM, 2015.

[19] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification
of software components in c. IEEE Transactions on Software Engineering,
30(6):388–402, June 2004. doi: 10.1109/tse.2004.22

[20] S. Chaki, A. Groce, and O. Strichman. Explaining abstract counterexam-
ples. In Proc. Intl. Symposium on Foundations of Software Engineering, pp.
73––82. ACM, New York, NY, USA, 2004. doi: 10.1145/1029894.1029908

[21] X. Chen, W. Zeng, Y. Lin, H. M. Al-maneea, J. Roberts, and R. Chang.
Composition and configuration patterns in multiple-view visualizations.
IEEE Trans. Visualization and Computer Graphics, 27(2):1514–1524, Feb.
2021. doi: 10.1109/tvcg.2020.3030338

[22] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-c pro-
grams. In Tools and Algorithms for the Construction and Analysis of
Systems, pp. 168–176. Springer Berlin Heidelberg, 2004. doi: 10.1007/978
-3-540-24730-2 15

[23] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,

Cambridge, MA, USA, 2000.
[24] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,

and C. Sánchez. Temporal logics for hyperproperties. In Lecture Notes in
Computer Science, pp. 265–284. Springer Berlin Heidelberg, 2014. doi:
10.1007/978-3-642-54792-8 15

[25] N. Coenen, B. Finkbeiner, C. Hahn, and J. Hofmann. The hierarchy of
hyperlogics. In Annual ACM/IEEE Symposium on Logic in Computer
Science. IEEE, June 2019. doi: 10.1109/lics.2019.8785713

[26] N. Coenen, B. Finkbeiner, C. Sánchez, and L. Tentrup. Verifying hyper-
liveness. In Intl. Conference on Computer Aided Verification, pp. 121–139.
Springer, 2019. doi: 10.1007/978-3-030-25540-4 7

[27] B. Cook, K. Khazem, D. Kroening, S. Tasiran, M. Tautschnig, and M. R.
Tuttle. Model checking boot code from AWS data centers. In International
Conference on Computer Aided Verification, pp. 467–486. Springer, 2018.
doi: 10.1007/978-3-319-96142-2 28

[28] Z. Cui, S. K. Badam, M. A. Yalçin, and N. Elmqvist. DataSite: Proac-
tive visual data exploration with computation of insight-based recom-
mendations. Information Visualization, 18(2):251–267, 2019. doi: 10.
1177/1473871618806555

[29] H. Dai Nguyen, A. D. Le, and M. Nakagawa. Deep neural networks for
recognizing online handwritten mathematical symbols. In IAPR Asian
Conference on Pattern Recognition, pp. 121–125, 2015. doi: 10.1109/ACPR.
2015.7486478

[30] B. Finkbeiner, C. Hahn, and H. Torfah. Model checking quantitative
hyperproperties. In Intl. Conference on Computer Aided Verification, pp.
144–163. Springer, 2018. doi: 10.1007/978-3-319-96145-3 8

[31] B. Finkbeiner, M. N. Rabe, and C. Sánchez. Algorithms for model check-
ing HyperLTL and HyperCTL∗. In Computer Aided Verification, Lecture
Notes in Computer Science, pp. 30–48. Springer International Publishing,
2015. doi: 10.1007/978-3-319-21690-4 3

[32] T. Flemisch, R. Langner, C. Alrabbaa, and R. Dachselt. Towards designing
a tool for understanding proofs in ontologies through combined node-link
diagrams. In International Workshop on Visualization and Interaction for
Ontologies and Linked Data, Nov. 2020.

[33] M. Frisch. Visualization and Interaction Techniques for Node-Link Dia-
gram Editing and Exploration. PhD thesis, Otto-von-Guericke-Universität
Magdeburg, München, 6 2012.

[34] B. Gleiss, L. Kovács, and L. Schnedlitz. Interactive visualization of
saturation attempts in vampire. In Lecture Notes in Computer Science, pp.
504–513. Springer International Publishing, 2019. doi: 10.1007/978-3-030
-34968-4 28

[35] P. Goffin, J. Boy, W. Willett, and P. Isenberg. An exploratory study of
word-scale graphics in data-rich text documents. IEEE Trans. Visualization
and Computer Graphics, 23(10):2275–2287, Oct. 2017. doi: 10.1109/tvcg.
2016.2618797

[36] H. Goldsby, B. H. C. Cheng, S. Konrad, and S. Kamdoum. A visualization
framework for the modeling and formal analysis of high assurance sys-
tems. In Model Driven Engineering Languages and Systems, pp. 707–721.
Springer Berlin Heidelberg, 2006. doi: 10.1007/11880240 49

[37] G. Grätzer. Math into LaTeX. Birkhäuser, 3rd ed., 2000.
[38] A. Groce, D. Kroening, and F. Lerda. Understanding counterexamples

with explain. In Computer Aided Verification, pp. 453–456. Springer
Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-27813-9 35

[39] A. Groce and W. Visser. What went wrong: Explaining counterexamples.
In Model Checking Software, pp. 121–136. Springer Berlin Heidelberg,
2003. doi: 10.1007/3-540-44829-2 8

[40] D. Gunning. Explainable artificial intelligence (XAI). Technical report,
Defense Advanced Research Projects Agency (DARPA), 2016.

[41] M. Haverbeke. CodeMirror, 2011. https://codemirror.net/.
[42] F. Hohman, A. Srinivasan, and S. M. Drucker. TeleGam: Combining

visualization and verbalization for interpretable machine learning. In
IEEE Visualization Conference, pp. 151–155. IEEE, 2019. doi: 10.1109/
VISUAL.2019.8933695

[43] IEEE Computer Society. IEEE Standard for Verilog Hardware Description
Language, 2006. doi: 10.1109/IEEESTD.2006.99495

[44] E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, and P. Seong. Fbdverifier:
Interactive and visual analysis of counter-example in formal verification of
function block diagram. Journal of Research and Practice in Information
Technology, 42(3):171––188, 2010.

[45] S. Jeong, J. Yoo, and S. Cha. VIS analyzer: A visual assistant for
VIS verification and analysis. In IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
IEEE, Piscataway, NJ, USA, 2010. doi: 10.1109/isorc.2010.41

10

https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1109/CCECE.2004.1347584
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1145/2591062.2591134
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/10.1109/qest.2008.40
https://doi.org/doi:10.1515/9783110636420
https://doi.org/doi:10.1515/9783110636420
https://doi.org/doi:10.1515/9783110636420
https://doi.org/doi:10.1515/9783110636420
https://doi.org/doi:10.1515/9783110636420
https://doi.org/doi:10.1515/9783110636420
https://doi.org/doi:10.1515/9783110636420
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1017/s0960129511000193
https://doi.org/10.1109/tvcg.2017.2674958
https://doi.org/10.1109/tvcg.2017.2674958
https://doi.org/10.1109/tvcg.2017.2674958
https://doi.org/10.1109/tvcg.2017.2674958
https://doi.org/10.1109/tvcg.2017.2674958
https://doi.org/10.1109/tvcg.2017.2674958
https://doi.org/10.1109/tvcg.2017.2674958
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/hase.2010.15
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/icsmc.2010.5641711
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/visual.1991.175794
https://doi.org/10.1109/tse.2004.22
https://doi.org/10.1109/tse.2004.22
https://doi.org/10.1109/tse.2004.22
https://doi.org/10.1109/tse.2004.22
https://doi.org/10.1109/tse.2004.22
https://doi.org/10.1109/tse.2004.22
https://doi.org/10.1109/tse.2004.22
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1109/tvcg.2020.3030338
https://doi.org/10.1109/tvcg.2020.3030338
https://doi.org/10.1109/tvcg.2020.3030338
https://doi.org/10.1109/tvcg.2020.3030338
https://doi.org/10.1109/tvcg.2020.3030338
https://doi.org/10.1109/tvcg.2020.3030338
https://doi.org/10.1109/tvcg.2020.3030338
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1109/lics.2019.8785713
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1109/ACPR.2015.7486478
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
http://www.dr.hut-verlag.de/978-3-8439-0563-3.html
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1109/tvcg.2016.2618797
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://codemirror.net/
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://search.informit.org/doi/10.3316/ielapa.448422067913862
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41
https://doi.org/10.1109/isorc.2010.41

© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

[46] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pan-
dav, A. Slobodová, C. Taylor, V. A. Frolov, E. Reeber, and A. Naik. Replac-
ing testing with formal verification in intel coretm i7 processor execution
engine validation. In Intl. Conference on Computer Aided Verification, pp.
414–429. Springer, 2009. doi: 10.1007/978-3-642-02658-4 32

[47] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W.
Barrett. The marabou framework for verification and analysis of deep
neural networks. In Intl. Conference on Computer Aided Verification, pp.
443–452. Springer, 2019. doi: 10.1007/978-3-030-25540-4 26

[48] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre
attacks: Exploiting speculative execution. In IEEE Symposium on Security
and Privacy, 2019.

[49] M. Kohlhase, C. Lange, C. Müller, N. Müller, and F. Rabe. Adaptation of
notations in living mathematical documents, 2008.

[50] M. Kohlhase and F. Rabe. Semantics of openmath and mathml 3. Mathe-
matics in Computer Science, 6(3):235–260, 2012.

[51] M. Koleini, M. R. Clarkson, and K. K. Micinski. A temporal logic of
security. CoRR, abs/1306.5678, 2013.

[52] E. Koutsofios and S. C. North. Drawing graphs with dot. Technical report,
AT&T Bell Laboratories, 1992.

[53] J. Lahtinen, T. Launiainen, K. Heljanko, and J. Ropponen. Model Checking
Methodology for Large Systems, Faults and Asynchronous Behaviour:
SARANA 2011 Work Report. VTT Technical Research Centre of Finland,
Finland, 2012.

[54] J. Lao-Tebar, F. Alvaro, and D. Marques. Proposal for coexistence of
mathematical handwritten and keyboard input in a wysiwyg expression
editor. In FM4M/MathUI/ThEdu/DP/WIP@CIKM, 2016.

[55] K. G. Larsen, F. Lorber, and B. Nielsen. 20 years of UPPAAL enabled
industrial model-based validation and beyond. In Lecture Notes in Com-
puter Science, pp. 212–229. Springer International Publishing, 2018. doi:
10.1007/978-3-030-03427-6 18

[56] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown:
Reading kernel memory from user space. In USENIX Security Symposium,
2018.

[57] C. Liu, L. Xie, Y. Han, D. Wei, and X. Yuan. AutoCaption: An approach
to generate natural language description from visualization automatically.
In Proc. IEEE Pacific Symposium on Visualization, pp. 191–195. IEEE,
2020. doi: 10.1109/PacificVis48177.2020.1043

[58] K. Loer and M. D. Harrison. An integrated framework for the analysis of
dependable interactive systems (IFADIS): Its tool support and evaluation.
Automated Software Engineering, 13(4):469–496, May 2006. doi: 10.
1007/s10515-006-7999-y

[59] Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

[60] R. Martinez-Maldonado, V. Echeverria, G. Fernandez Nieto, and S. Buck-
ingham Shum. From data to insights: A layered storytelling approach
for multimodal learning analytics. In Proc. CHI Conference on Human
Factors in Computing Systems, pp. 1––15. ACM, New York, NY, USA,
2020. doi: 10.1145/3313831.3376148

[61] S. H. Masoumi, S. A. R. Al-Haddad, and F. Z. Rokhani. New tool for
converting high-level representations of finite state machines to verilog
hdl. In IEEE Student Conference on Research and Development, pp. 1–6,
2017. doi: 10.1109/SCORED.2017.8305431

[62] A. Mathisen, T. Horak, C. N. Klokmose, K. Grønbæk, and N. Elmqvist.
InsideInsights: Integrating Data-Driven Reporting in Collaborative Visual
Analytics. Computer Graphics Forum, 38(3), June 2019. doi: 10.1111/cgf.
13717

[63] E. Michael, D. Woos, T. Anderson, M. D. Ernst, and Z. Tatlock. Teaching
rigorous distributed systems with efficient model checking. In Proc. Eu-
roSys Conference, pp. 32:1–32:15. ACM, New York, NY, USA, 2019. doi:
10.1145/3302424.3303947

[64] MyScript. Handwriting recognition - MyScript, 2017. https://www.
myscript.com/handwriting-recognition.

[65] J. Obeid and E. Hoque. Chart-to-Text: Generating natural language
descriptions for charts by adapting the transformer model. In Proc. In-
ternational Conference on Natural Language Generation, pp. 138–147.
Association for Computational Linguistics, Dublin, Ireland, 2020.

[66] OpenCores.org. OpenCores, 1999. https://opencores.org/.
[67] OpenJS Foundation. Node.js, 2009. http://nodejs.org/.
[68] A. Pakonen, I. Buzhinsky, and V. Vyatkin. Counterexample visualization

and explanation for function block diagrams. In IEEE International
Conference on Industrial Informatics, pp. 747–753. IEEE, 2018. doi: 10.
1109/indin.2018.8472025

[69] S. Patil, V. Vyatkin, and C. Pang. Counterexample-guided simulation
framework for formal verification of flexible automation systems. In IEEE
International Conference on Industrial Informatics. IEEE, Piscataway, NJ,
USA, 2015. doi: 10.1109/indin.2015.7281905

[70] V. A. Pedroni. Finite State Machines in Hardware: Theory and Design
(with VHDL and SystemVerilog). The MIT Press, 2013.

[71] M. Pollanen, J. Hooper, B. Cater, and S. Kang. Towards a universal
interface for real-time mathematical communication. In CICM Workshops,
2014.

[72] J. C. Roberts. State of the art: Coordinated & multiple views in exploratory
visualization. In Proc. IEEE Conference on Coordinated and Multiple
Views in Exploratory Visualization, pp. 61–71. IEEE, Piscataway, NJ,
USA, July 2007. doi: 10.1109/cmv.2007.20

[73] H. Romat, C. Appert, and E. Pietriga. Expressive authoring of node-
link diagrams with graphies. IEEE Trans. Visualization and Computer
Graphics, 27(4):2329–2340, Apr. 2021. doi: 10.1109/tvcg.2019.2950932

[74] F. Rothenberger. Integration and analysis of alternative smt solvers for
software verification. Master’s thesis, ETH Zurich, 2016. doi: 10.3929/
ETHZ-A-010608394

[75] V. Schuppan and A. Biere. Shortest counterexamples for symbolic model
checking of LTL with past. In Tools and Algorithms for the Construction
and Analysis of Systems, pp. 493–509. Springer Berlin Heidelberg, 2005.
doi: 10.1007/978-3-540-31980-1 32

[76] H. Seoul-Oh, J. Adkisson, and M. Stufflebeam. Mathquill, 2012. http:
//mathquill.com/.

[77] R. Sevastjanova, F. Beck, B. Ell, C. Turkay, R. Henkin, M. Butt, D. A.
Keim, and M. El-Assady. Going beyond visualization: Verbalization as
complementary medium to explain machine learning models. In Workshop
on Visualization for AI Explainability at IEEE VIS, 2018.

[78] D. Shi, X. Xu, F. Sun, Y. Shi, and N. Cao. Calliope: Automatic visual
data story generation from a spreadsheet. IEEE Trans. Visualization and
Computer Graphics, 27(2):453–463, 2021. doi: 10.1109/TVCG.2020.3030403

[79] T. Spinner, U. Schlegel, H. Schäfer, and M. El-Assady. explAIner: A
visual analytics framework for interactive and explainable machine learn-
ing. IEEE Trans. Visualization and Computer Graphics, 26(1):1064–1074,
2020. doi: 10.1109/TVCG.2019.2934629

[80] A. Spreafico and G. Carenini. Neural data-driven captioning of time-series
line charts. In Proc. International Conference on Advanced Visual Inter-
faces. ACM, New York, NY, USA, 2020. doi: 10.1145/3399715.3399829

[81] A. Srinivasan, S. M. Drucker, A. Endert, and J. Stasko. Augmenting visual-
izations with interactive data facts to facilitate interpretation and communi-
cation. IEEE Trans. Visualization and Computer Graphics, 25(1):672–681,
Jan. 2019. doi: 10.1109/tvcg.2018.2865145

[82] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2seq-Vis: A visual debugging tool for sequence-to-sequence
models. IEEE Trans. Visualization and Computer Graphics, 25(1):353–
363, 2019. doi: 10.1109/TVCG.2018.2865044

[83] W. Thielke. Code geknackt. https://www.focus.de/finanzen/
news/krankenkassen-code-geknackt_aid_148829.html, 2013.

[84] F. Wiehr, A. Hirsch, F. Daiber, A. Kruger, A. Kovtunova, S. Borgwardt,
E. Chang, V. Demberg, M. Steinmetz, and H. Jorg. Safe handover in
mixed-initiative control for cyber-physical systems, 2020.

[85] A. Wigmore, G. Hunter, E. Pflügel, J. Denholm-Price, and V. Binelli.
Using automatic speech recognition to dictate mathematical expressions:
The development of the “talkmaths” application at kingston university.
Journal of Computers in Mathematics and Science Teaching, 28(2):177–
189, Apr. 2009.

[86] S. Wolfram. Symbolic mathematical computation. Communications of
the ACM, 28(4):390––394, Apr. 1985. doi: 10.1145/3341.3347

[87] D. Woos. A Step-through Debugger for Distributed Systems. PhD thesis,
University of Washington, 2019.

[88] K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang, and J. Wenskovitch.
Survey on the analysis of user interactions and visualization provenance.
Computer Graphics Forum, 39(3):757–783, June 2020. doi: 10.1111/cgf.
14035

11

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1306.5678
http://arxiv.org/abs/1306.5678
http://arxiv.org/abs/1306.5678
http://arxiv.org/abs/1306.5678
http://arxiv.org/abs/1306.5678
http://arxiv.org/abs/1306.5678
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1109/PacificVis48177.2020.1043
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1007/s10515-006-7999-y
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1145/3313831.3376148
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1109/SCORED.2017.8305431
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://www.myscript.com/handwriting-recognition
https://www.myscript.com/handwriting-recognition
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://www.aclweb.org/anthology/2020.inlg-1.20
https://opencores.org/
http://nodejs.org/
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2018.8472025
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/indin.2015.7281905
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.1109/tvcg.2019.2950932
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.3929/ETHZ-A-010608394
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
http://mathquill.com/
http://mathquill.com/
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2020.3030403
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/tvcg.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/TVCG.2018.2865044
https://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html
https://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html
https://www.learntechlib.org/p/30301
https://www.learntechlib.org/p/30301
https://www.learntechlib.org/p/30301
https://www.learntechlib.org/p/30301
https://www.learntechlib.org/p/30301
https://www.learntechlib.org/p/30301
https://www.learntechlib.org/p/30301
https://doi.org/10.1145/3341.3347
https://doi.org/10.1145/3341.3347
https://doi.org/10.1145/3341.3347
https://doi.org/10.1145/3341.3347
https://doi.org/10.1145/3341.3347
https://doi.org/10.1145/3341.3347
https://doi.org/10.1145/3341.3347
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1111/cgf.14035

	Introduction
	Working with Hyperproperties
	Example: Verifying Observational Determinism
	Current Workflow
	Challenges

	Background & Related Work
	Model Checking of Hyperproperties
	Visualization and Explication of Formal Methods
	Editing Formulas and Systems

	HyperVis: Visualizing Model Checking Results
	Components of Counterexamples
	Design Goals
	Visualization Design
	Visualizing a Counterexample: Provided Views
	Analyzing a Counterexample: Interactive Guidance

	Tool Functionalities & Editing Facilities
	Design Process & Implementation
	Design Phases
	Implementation as Web Tool

	Validating HyperVis
	Case Studies
	User Feedback Sessions
	Study Design
	Results

	Discussion
	Conclusion

