Hierarchical Graphs on Mobile
Devices: A Lane-based Approach

Tom Horak Raimund Dachselt

Interactive Media Lab Interactive Media Lab
Technische Universitat Dresden Technische Universitét Dresden
Dresden, Germany Dresden, Germany
horakt@acm.org dachselt@acm.org

Items Sold

Sk T 128K 125K

raw materials UsD

Operating profit USD

Sales Revenue

1SZMLISM LI0M 113w
o s 20

TIM VM 139 4 Service Revenue USD

Service Duration (days)

W oA ae s

Headcount

Service Fee

Costs of FTE

S0 sa2 sS4 58

Figure 1: We propose to optimize hierarchal graphs for mobile
devices with visualization and interaction concepts based on
lanes (i.e., the different hierarchy levels; here numerated and
highlighted in green), which can be expanded, minimized, or
collapsed.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author(s).

MobileVis '18 Workshop at CHI 2018, April 21, 2018, Montreal, QC, Canada.
https://mobilevis.github.io/

© 2018 Copyright is held by the owner/author(s).

Abstract

In this paper, we propose a lane-based approach for dis-
playing hierarchical graphs on mobile devices such as
smartphones and tablets. We emphasize the hierarchical
levels of the graph through lanes, in order to ease the data
exploration in a mobile interface. From a visualization per-
spective, we adapt the appearance of nodes per lane as
well as reduce non-relevant levels by collapsing the corre-
sponding lanes. From an interaction perspective, the lanes
introduce constraints that allow us to simplify the interac-
tion vocabulary and add guidance for the user. We examine
our concept by applying it to a business data analysis sce-
nario using value driver trees (VDT). For this scenario, we
further propose additional interface elements and function-
alities that support the user during the data exploration as
well as basic data simulations. We believe that our lane-
based approach is a concept that is able to ease the visual
exploration of hierarchical graphs on mobile devices.

Author Keywords
Mobile visualization; hierarchical graphs; data exploration;
value driver trees; mobile devices.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User Inter-
faces.

https://mobilevis.github.io/

Types of Hierarchical Graphs:

L Ay

DAG Multitree
multiple parents multiple parents
diamonds no diamonds

I
N Y

Tree(s)
one parent
single root node

Figure 2: In directed acyclic
graphs (DAG) and multitrees [6],
nodes can have multiple parents,
however, multitrees do not allow for
diamonds (i.e., multiple paths from
one node to another). In normal
trees, each node has only one
parent node, and only one root
node exists

Introduction & Background

Hierarchical graphs are particularly interesting as they
come with special layout requirements. Formally, they are
directed acyclic graphs (DAG), which are laid out via a hi-
erarchical graph drawing approach (see Figure 2). While
graphs in general can often be freely altered, the impor-
tance to recognize existing hierarchy levels and how nodes
in the lower levels influence nodes in the upper levels lead
to certain layout restrictions. For instance, in organization
charts of companies it is essential to identify in which level
a certain person is, who is assigned to this person, and
who are the supervisors. This fixed structure of hierarchi-
cal graphs is especially challenging when adapting them
for small screens. In context of the emerging need for vi-
sual exploration tools on mobile devices, such as tablets or
smartphones, this issue is getting more prominent again
and requires both new visualization and new interaction
concepts.

Especially in the management level of companies, the need
for monitoring a companies’ performance on the go is in-
creasing. While providing selected single data points is
straightforward, enabling more complex business data anal-
ysis on mobile devices remains challenging. An example for
such a more complex analysis are value driver trees (VDT):
they represent characteristics as well as parameters of a
business and how these influence each other [1, 13], in
most cases a company’s value drivers and their impact on
key performance indicators (KPIs). Value drivers are spe-
cific adjustable parameters of a business, e.g., number of
sold items, item price, or number of employees, while KPIs
are common business indicators, e.g., net profit, operating
profit, or gross sales. Importantly, the value drivers often
affect multiple other nodes, i.e., nodes can have multiple
parents. Thus, VDTs can be DAGs or multitrees [6] and
must not necessarily be trees (cf. Figure 2). Typically, the

| operssngone_so] L
M il E— |
I o T Service Fee UsD.
= | prmmm—"m
[
| O T - - |
Lo o o o] | T
| [L
i o= =msIE

Figure 3: Value driver trees represent multiple relevant
parameters of a business and how these affect each other. In
many cases, a company’s KPIs (at the higher levels) and value
drivers (at the lower levels) are of most interest.

nodes of a VDT show the value of a given attribute for mul-
tiple years, allowing recognizing trends over time. While the
size of VDTs depends heavily on the company and their
analysis strategy, the example graph given in Figure 3 is
representative for small and midsize companies.

Besides general research on how to design hierarchical
visualizations [4, 14], there also exists work on navigat-
ing in trees and hierarchical graphs. Already 15 years ago,
two similar concepts for exploring larger trees were pro-
posed: SpaceTree [12] and Degree-of-interest Trees [3,
8]. Both try to show only as many nodes of the tree as fit
into the available screen space, while the remaining sub-
trees are indicated through triangle representations at the
parent node. In a similar fashion, McGuffin and Balakrish-
nan [11] proposed different layout strategies for multitrees
as well as interaction mechanisms to expand multiple lev-
els of collapsed subtrees. For more complex hierarchical

Service Duration (days)

Service Fee

UsD
UsD

raw materials
Costs of FTE

Headcount

Materials

D
D

Costs of goods sold U
Payroll Expenses U

UsD

Gross profit

Operating profit USD.

Figure rotated 90° for
increased readability

C

Figure 4: For lanes with many
nodes, the nodes can be displayed
in a minimized way.

graphs, Gladisch et al. [7] proposed a split view interface,
where the hierarchical structure was used to adjust the
level of abstraction of nodes. To reduce the complexity of
hierarchical graphs, Lee et al. [10] developed the Treeplus
interface allowing to explore such a graph sequentially in

a tree-like fashion. While these concepts are able to ease
the exploration, they (i) are not focused on mobile devices,
and (ii) assume that users follow a top-down approach, i.e.,
expand a certain subtree in order to see more details. In
contrast, in VDTs the leaf nodes are often representing de-
termining factors for the data analysis, hence hiding them
by collapsing whole subtrees is unfavorable. Horak et al. [9]
considered these aspects in an earlier conceptual work, but
focused on concepts of semantic zooming and embedded
visualizations.

Lane-based Graph Layout
When working with hierarchical graphs, in most cases some

specific levels (e.g., top and bottom level) or node types (e.g.

leaf nodes) are of particular interest. This is similar for
VDTs: the value drivers are typically at the bottom levels of
the graph while the KPIs are located in the top levels [13].
As a result, not all levels are of the same interest to the
user. We want to exploit this aspect by proposing a lane-
based visualization and interaction approach: each lane
represents a hierarchy level and can be individually con-
trolled. More specifically, these lanes allow for two things:
(i) applying different visualization adaptations to each lane,
and (ii) adding constraints to user interactions in order to
simplify navigation and manipulation while guiding the user.
Following the typical layout of VDTs, the lanes are in a
horizontal order. The nodes themselves are visualized as
wide rectangles as this is common in VDTs. Although other
forms could be beneficial in certain situations (e.g., tall rect-
angles, squares), we will not consider them in this paper.

T
) ! or o raw materials
Item Price UsD
N . Net profit usb Sales Revenue

Headcount

a8

Figure 5: Lanes can be collapsed (dotted lines) in favor of a few
selected lanes. Swiping horizontally allows navigating between
lanes (a to b).

When bringing these visualizations to mobile devices, the
limited display space is the most prominent challenge. As
the tree is growing from left to right, a landscape orienta-
tion allows for the highest number of displayed lanes at the
same time. However, as a lane can contain many nodes,

it is possible that not all nodes fit in the available vertical
space. To reduce the need for vertical scrolling inside a
lane, we propose to shrink the nodes of these lanes to a
minimized version where the non-essential details are re-
moved (Figure 4). If still not all nodes can be displayed at
the same time, vertical scrolling is enabled for this lane; the
other lanes are not affected. In order to scroll all lanes in
parallel, a vertical two-finger drag can be used. In some
situations it can be required to manually adapt the level of
detail, which equals a constrained semantic zooming (e.g.,
expanding or minimizing nodes of a lane by pinch) or a
details-on-demand operation (e.g., tapping a node).

The horizontal spread is also limited, i.e., in many situa-
tions there is not enough space to show all lanes. There-
fore, inspired by EImqvist et al. [5] and Butscher et al. [2],
we propose to collapse lanes that are of less interest (i.e.,
the lanes in the middle). As shown in Figure 1 and Fig-

< Pinned-only Mode

Operating profit USD

Figure 6: (a) Nodes can be
pinned to a top bar; (b) a

pinned-only mode provides a
special view on these nodes.

ure 5, these collapsed lanes are displayed as dotted lines.
All nodes and links are indicated in light gray and visually
emphasized if they are part of a path between one of the
nodes in the expanded lanes. To display the name of such
an (indicated) node of a collapsed lane on demand, a tap
could be used. For navigation, we propose that a horizon-
tal swipe on one of the expanded lanes allows switching to
a neighboring lane, i.e., swiping right collapses the current
lane while expanding the next lane on the left (Figure 5a to
b) and vice versa. In order to quickly access a collapsed
lane (i.e., dotted line), double tapping on this lane could di-
rectly expand it in favor of the closest, currently expanded
lane. Regarding tablet devices, we consider a number of
four to five lanes—depending on the size and resolution—
as optimal to be able to display the nodes and their content
in an easily readable way. On smartphones, we propose an
optimal number of only two lanes, as they are smaller and
mostly held in portrait mode. However, it should be possible
to manually adapt the number of expanded lanes to match
different user preferences, for instance, through a horizontal
pinch gesture spanning multiple lanes. As it is possible that
not all lanes fit into the display space, horizontal scrolling
could be supported by a two-finger drag.

As a result, the different adaptations of lanes (collapsed,
minimized, expanded) represent a degree of interest from
the user in these lanes, where multiple focus points (i.e.,
lanes) can exist. This lane-based approach is in contrast to,
e.g., the degree-of-interest trees (DOITrees) [3, 8], in which
the focus is on single nodes. While our adaptations are sav-
ing a significant amount of space—similar to DOITrees—
they also preserve the visibility of specific lanes (i.e., hi-
erarchy levels) at the same time. For larger graphs with a
high number of lanes or nodes per lane, our approach faces
clear limitations. In these cases, both horizontal and verti-
cal scrolling can get necessary, which increases the effort

for keeping track of all nodes. In these situations, additional
techniques such as extended semantic zooming [9], col-
lapsing larger graph parts [12, 3], or alternative represen-
tations could be incorporated. However, in context of our
described application case, most of the VDTs are manage-
able in size.

Pinning of Nodes

Besides the lane-based graph layout, we propose to pro-
vide further interface elements and interaction flows for the
presented application case on a mobile device. As outlined
before, users are particularly interested in analyzing the
effects of a changed value driver on certain KPIs or other
nodes. However, these nodes may not always be located
in the same lane. For instance, in our example graph, the
driver nodes are not exclusively in the last lane but in the
last two, while the KPI nodes are distributed across three
different lanes. Therefore, we propose to allow the pinning
of nodes.

By performing a long tap on a node, a copy of this node

is pinned at a bar at the top of the screen. In the top bar,
nodes are displayed in a simplified way showing the name,
unit and value for a particular year (Figure 6a). This repre-
sentation is decoupled from the graph view, thus no links
are shown. On smartphones, the bar can naturally hold four
to five nodes; when adding more nodes the bar should be-
come scrollable. We propose that the pinned nodes also
serve as a quick access: tapping on a node navigates to
the corresponding lane, i.e., opening and expanding the
lane if it is not already in focus. By again long tapping on
the node, it could be unpinned.

In some situations, the user wants to focus purely on the
pinned nodes. Therefore, we propose to offer a pinned-
only mode, which is a simplified presentation of the pinned

2017
2018
Headcount 2019
2020

Figure 7: Mock-up of editing a
value on a Samsung Galaxy S8
smartphone with opened keyboard.

Headcount

Costs of FTE UsD

Bl ovimistic
version version

Figure 8: A bottom bar allows
storing and accessing different
states resulting from value
manipulations.

nodes (Figure 6b). The nodes are connected with links;
however, no other nodes are shown or indicated. The lay-
out here is similar to an indented tree. The mode can be
activated or deactivated by a long tap on the top bar.

Simulating different States

In order to actually manipulate a node and start a simu-
lation, it must be possible to edit values. By double tap-
ping on a node, an edit view with a date picker for the year
and an input field for the value could be offered (Figure 7).
When confirming the changed value, the graph is updated
and the changes in other nodes are displayed. We propose
a split view layout while editing; both the graph and the edit
view should be visible at the same time. However, it must
be considered that the virtual keyboard of mobile devices
requires a certain amount of space, as visible in Figure 7.

After adjusting the value drivers, the user may want to store
this simulation for later use. By performing a long tap on an
empty area of any lane, a menu allows to store the current
state with a short description. Analogous to the top bar with
pinned nodes, the stored sets are displayed in a bottom bar
and can be restored by tapping (Figure 8). This allows the
user to create and compare different scenarios (e.g., opti-
mistic vs. pessimistic) by quickly switching between these
states. For both the top bar and the bottom bar, the bar title
on the left serves as a toggle to hide the remaining part of
the bar, which allows to save display space if required.

Discussion & Conclusion

In this paper, we propose a lane-based approach for visual-
izing hierarchical graphs and interacting with them on mo-
bile devices (Figure 7 and 9). The lane concept allows us
to introduce some constraints in favor of an improved mo-
bile experience. For instance, instead of freely panning and
zooming in parallel, we separate and limit these interac-

Figure 9: Mock-up of the envisioned mobile interface on a
Samsung Galaxy S3 tablet.

tions. Users can swipe horizontally to switch between single
lanes or scroll the viewport horizontally with a two-finger
drag; vertical scrolling can be performed by a one-finger
drag for a single lane or by a two-finger drag for all lanes in
parallel (if scrollable). The zooming is limited to two states,
a minimal node layout and a default layout, as well as en-
capsulated for each lane.

While such constraints can have negative implications,

we believe that these constraints can improve the user
experience especially on mobile devices. Furthermore,

the lanes provide a degree of responsiveness allowing to
adapt the visualization to different devices and screen es-
tates. In combination, we believe that our concepts allow for
an easy exploration of value driver trees on the go: man-
agers are able to quickly view the most important values
while still perceiving the overall interplay between them.
Mainly, this is supported by emphasizing the top and bot-

tom lanes—leveraging the implicit knowledge about the
graph’s structure—instead of forcing a top-down navigation
approach, as it is often the case in tree visualization inter-
faces.

Of course, our concepts heavily depend on the application
case as well as the visualization and their properties. In our
case, the hierarchical graphs come with a clear and strict
layout; in other layouts, e.g., force-directed ones, our lane-
based approach does not directly apply. However, as future
work it could be interesting to look into such application
scenarios and how our ideas could adapt (e.g., constrain-
ing both interaction and visual adaptations onto clusters).
For now, we plan to implement our described concepts in a
prototype and study our ideas in more depth.

Acknowledgments
This work was supported in part by DFG grant DA 1319/3-3
(GEMS 2.0).

REFERENCES
1. Rama Akkiraju and Ruoyi Zhou. 2012. Measuring
Service Solution Quality in Services Outsourcing
Projects Using Value Driver Tree Approach. In 2012
Annual SRIl Global Conference. IEEE. DOI:
http://dx.doi.org/10.1109/srii.2012.30

2. Simon Butscher, Kasper Hornbzek, and Harald
Reiterer. 2014. SpaceFold and PhysicLenses:

Simultaneous Multifocus Navigation on Touch Surfaces.

In Proceedings of the 2014 International Working
Conference on Advanced Visual Interfaces. ACM,
209-216. D0OI:
http://dx.doi.org/10.1145/2598153.2598177

3. Stuart K. Card and David Nation. 2002.
Degree-of-interest Trees: A Component of an

Attention-reactive User Interface. In Proceedings of the
Working Conference on Advanced Visual Interfaces.

ACM, 231-245. DOI:
http://dx.doi.org/10.1145/1556262.1556300

. Niklas Elmqvist and Jean-Daniel Fekete. 2010.

Hierarchical Aggregation for Information Visualization:
Overview, Techniques, and Design Guidelines. IEEE
Transactions on Visualization and Computer Graphics
16, 3 (may 2010), 439-454. DOI:
http://dx.doi.org/10.1109/tvcg.2009.84

. Niklas Elmqvist, Nathalie Henry, Yann Riche, and

Jean-Daniel Fekete. 2010. Mélange: Space Folding for
Visual Exploration. IEEE Transactions on Visualization
and Computer Graphics 16, 3 (may 2010), 468—483.
DOI:http://dx.doi.org/10.1109/tvcg.2009.86

. George W. Furnas and Jeff Zacks. 1994. Multitrees:

enriching and reusing hierarchical structure. In
Proceedings of the ACM Conference on Human
Factors in Computing Systems. ACM, 330-336. DOI:
http://dx.doi.org/10.1145/191666.191778

. Stefan Gladisch, Heidrun Schumann, and Christian

Tominski. 2013. Navigation Recommendations for

Exploring Hierarchical Graphs. In Advances in Visual
Computing. Springer Berlin Heidelberg, 36—47. D0OI1:
http://dx.doi.org/10.1007/978-3-642-41939-3_4

. Jeffrey Heer and Stuart K. Card. 2004. DOITrees

Revisited: Scalable, Space-constrained Visualization of
Hierarchical Data. In Proceedings of the Working
Conference on Advanced Visual Interfaces. ACM,
421-424.DOT:
http://dx.doi.org/10.1145/989863.989941

http://dx.doi.org/10.1109/srii.2012.30
http://dx.doi.org/10.1145/2598153.2598177
http://dx.doi.org/10.1145/1556262.1556300
http://dx.doi.org/10.1109/tvcg.2009.84
http://dx.doi.org/10.1109/tvcg.2009.86
http://dx.doi.org/10.1145/191666.191778
http://dx.doi.org/10.1007/978-3-642-41939-3_4
http://dx.doi.org/10.1145/989863.989941

10.

11.

12.

Tom Horak, Ulrike Kister, and Raimund Dachselt. 2017.
Improving Value Driver Trees to Enhance Business
Data Analysis. In Poster Program of the 2017 IEEE
Conference on Information Visualization (InfoVis). 2.

Bongshin Lee, Cynthia S. Parr, Catherine Plaisant,
Benjamin B. Bederson, Vladislav D. Veksler, Wayne D.
Gray, and Christopher Kotfila. 2006. TreePlus:
Interactive Exploration of Networks with Enhanced Tree
Layouts. IEEE Transactions on Visualization and
Computer Graphics 12, 6 (2006), 1414—1426. DOI:
http://dx.doi.org/10.1109/tvcg.2006.106

Michael J. McGuffin and Ravin Balakrishnan. 2005.
Interactive visualization of genealogical graphs. In [EEE
Symposium on Information Visualization. |EEE, 16-23.
DOI:
http://dx.doi.org/10.1109/infvis.2005.1532124

Catherine Plaisant, Jesse Grosjean, and Benjamin B.
Bederson. 2002. SpaceTree: supporting exploration in

13.

14.

large node link tree, design evolution and empirical
evaluation. In IEEE Symposium on Information
Visualization. |EEE, 57-64. DOI:
http://dx.doi.org/10.1109/infvis.2002.1173148

Chunhua Tian, Rongzeng Cao, Wei Ding, Hao Zhang,
and Juhnyoung Lee. 2007. Business Value Analysis of
IT Services. In IEEE International Conference on
Services Computing (SCC 2007). IEEE. DOI :
http://dx.doi.org/10.1109/scc.2007.36

Tatiana von Landesberger, Arjan Kuijper, Tobias
Schreck, Jérn Kohlhammer, Jarke J. van Wijk,
Jean-Daniel Fekete, and Dieter W. Fellner. 2011. Visual
Analysis of Large Graphs: State-of-the-Art and Future
Research Challenges. Computer Graphics Forum 30, 6
(2011), 1719-1749. DOI : http:
//dx.doi.org/10.1111/j.1467-8659.2011.01898.x

http://dx.doi.org/10.1109/tvcg.2006.106
http://dx.doi.org/10.1109/infvis.2005.1532124
http://dx.doi.org/10.1109/infvis.2002.1173148
http://dx.doi.org/10.1109/scc.2007.36
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x

	Introduction & Background
	Lane-based Graph Layout
	Pinning of Nodes
	Simulating different States
	Discussion & Conclusion
	Acknowledgments
	REFERENCES

